WELCOME TO PERIOD 6: SPECIFIC HEAT, LATENT HEAT, AND HEAT CAPACITY

Homework #5 is due today at the beginning of class.
• What is specific heat?
• What is latent heat?
• What is heat capacity?
Definitions

Temperature: a measure of the AVERAGE kinetic energy of the atoms and molecules of a substance.

Thermal Energy: a measure of the TOTAL internal energy of the atoms and molecules of a substance.

Heat is thermal energy in transit.

Thermal conductivity is a measure of how quickly a material transports thermal energy. The larger the thermal conductivity constant K, the more rapidly heat is conducted through the material.

Evaporative cooling: Cooling of a material as the molecules with the greatest kinetic energy evaporate.
Specific heat

The amount of energy needed to raise the temperature of 1 gram of a substance by 1 degree Celsius.

\[Q = s_{heat} \times M \times \Delta T \]

- \(Q \) = heat added or subtracted (calories or joules)
- \(s_{heat} \) = specific heat (calories/gram °C or joules/gram °C)
- \(M \) = mass (grams)
- \(\Delta T \) = change in temperature = \(T_{final} - T_{initial} \) (°C)

Note: 1 milliliter of water has a mass of 1 gram.
Maximum temperature of boiling water

Water boils: 212°F 100°C

Water freezes: 32°F 0°C
Specific heat of water

Heat is measured in **calories** or **joules**

The specific heat of water is:

\[
4.186 \text{ joules/gram } ^0\text{C}
\]

or

\[
1 \text{ calorie/gram } ^0\text{C}
\]

What sources of error could occur in your experiment?
States (phases) of matter

- **In Solids**, molecules or atoms are held in a fixed position by electromagnetic bonds between the electrons and protons.

 Solids have a fixed shape and volume.

- **In Liquids**, molecules or atoms feel an attraction to one another, but there are no fixed bonds between them.

 Liquids have a fixed volume, but not a fixed shape.

- **In Gases**, molecules move independently of one another.

 Gases have no fixed volume or shape.
Latent heat

The amount of energy needed to change the phase of 1 gram of a substance.

\[Q = L_{heat} \times M \]

- \(Q \) = heat (calories or joules)
- \(L_{heat} \) = latent heat (calories/gram or joules/gram)
- \(M \) = mass (grams)

solid \(\leftrightarrow \) liquid: Latent heat of fusion of water = 80 cal/g

liquid \(\leftrightarrow \) gas: Latent heat of vaporization of water = 540 cal/g
Phase changes of ice \rightarrow water \rightarrow steam

Latent heat of fusion. Ice turns to water.

Latent heat of vaporization. Water turns to steam.
Heat capacity

The amount of energy needed to raise an object’s temperature by 1 degree C.

\[Q = H_{\text{cap}} \times \Delta T \]

- \(Q \) = heat added or subtracted (calories or joules)
- \(H_{\text{cap}} \) = heat capacity (calories/°C or joules/°C)
- \(\Delta T \) = change in temperature = \(T_{\text{final}} - T_{\text{initial}} \) (°C)
Heat capacity

Heat capacity is the amount of energy needed to raise an object’s temperature by 1 degree C.

When a given amount of heat flows into or out of objects,

✓ an object with a higher heat capacity experiences less temperature change and

✓ an object with a lower heat capacity experiences a greater temperature change.
Heat capacity / specific heat / latent heat

Heat capacity: The amount of energy needed to raise an object’s temperature by 1 degree Celsius.

\[Q = H_{\text{cap}} \times \Delta T \]

Specific heat: The amount of energy needed to raise the temperature of 1 gram of a substance by 1 degree Celsius.

\[Q = s_{\text{heat}} \times M \times \Delta T \]

Latent heat: The amount of energy needed to change the phase of 1 gram of a substance.
BEFORE THE NEXT CLASS…

✓ Read textbook chapter 7.
✓ Complete Homework Exercise 6.
✓ Print out Activity Sheet 7.