Sensitive Search for a Muon Electric Dipole Moment

Using the Present Muon g-2 Ring

$10^{-18} \text{e.cm} \rightarrow 10^{24} \text{e.cm}$

Probing the 2nd generation for CP-Violation

\[\frac{d\vec{s}}{dt} = \vec{d}_{edm} \times \vec{E} \]
Outline:

- Motivation of Muon EDM
- Principle of EDM Experiment
- Experimental Design
- Systematics
- Summary
Electric Dipole Moment

\[\vec{d}_\mu \propto \text{Spin Vector} \]

Violates both P & T Symmetries

[Diagram showing CPT and CP]

1ppm in g-2: \[\frac{\Delta g}{g} \frac{e}{2m} \sim 10^{-22} \text{ e} \cdot \text{cm} \]

2nd generation and CP "Crisis"
Muon $g-2$ Results

Measurements (1-4) and Projections (6, 7)
Electric Dipole Moments in Supersymmetric Theories

Apostolos Pilafitis (CERN)

- CP-violating phases in the MSSM

- One-loop contribution to EDMs and CP crisis (Schemes of resolving the CP crisis)

- Two-loop contribution to EDMs (New two-loop contribution to EDMs)

- Three-loop contribution to EDMs

- Conclusions
Conclusions

- Supersymmetric theories predict large EDMs at the observable and higher level.

- Schemes of resolving the CP crisis:
 1. CP phases $\approx O(10^{-2})$; $M_{\tilde{f}}, m_{\chi} \sim 200$ GeV
 2. CP phases $\approx O(1)$; $M_{\tilde{f}} \geq 1$ TeV, for the first two generations only. There is still a large two-loop EDM contribution due to super-BZ-type graphs involving the third generation.
 3. Non-universal trilinear A_f couplings or cancellation mechanism.

- New experiments of lepton- and quark- EDMs beyond the first generation are very important, e.g. μ-EDM.
to the statistical error and the second to the systematic.

Stronger than linear ($x < 0$). The number in the first parentheses for the electron case refers
and neutrons (n). For various speculative models the scaling with the lepton mass is

For protons (p), muons (μ), taus (τ), electrons (e), and muons (μ), neutrons (n), and protons (p).

| x_{μ} | x_{π} | Present Limit on $|p|$ | New Physics Limits | Standard Model Prediction |
|----------|----------|----------------|-------------------|--------------------------|
| 0.5×10^{-3} | 0.5×10^{-3} | 6.3×10^{-2} | 90% C.L. | 1.05×10^{-18} | 1.8×10^{-27} | e |
| 0.6×10^{-3} | 0.4×10^{-3} | 3.1×10^{-16} | 95% C.L. | 1.0×10^{-18} | 1.2×10^{-27} | n |
| 1.1×10^{-3} | 1.0×10^{-3} | 6.3×10^{-23} | 10^{-22} | 6.3×10^{-23} | 10^{-22} | d |

Table 1: Limits on Electric Dipole Moments for Electrons (e), Muons (μ), and Neutrons (n).
Muon EDM Collaboration

R.M. Carey, J.P. Miller*, O. Rind, B.L. Roberts, L.R. Sulak
Boston University

H. Brown, G.T. Danby, J.W. Jackson, R. Larsen, D.M. Lazarus,
W. Meng, W.M. Morse, C. Ozben, R. Prigl, Y.K. Semertzidis*
Brookhaven National Lab

V. Balakin, A. Bazhan, A. Dudnikov, B.I. Khazin, G. Sylvestrov
BINP, Novosibirsk

Y. Orlov
Cornell University

K. Jungmann
University of Heidelberg

P.T. Debevec, D.W. Hertzog, C.J.G. Onderwater
University of Illinois

E. Stephenson
Indiana University

P. Cushman, I. Kronkvist
University of Minnesota

F.J.M. Farley
Yale University

*Spokesperson
Spin Precession in g-2 Ring
(Top View)

\[\vec{\omega}_a = -a \frac{e}{m} \vec{B} \]
\[
\mathcal{O} + \mathcal{O} = \mathcal{O}
\]

\[
\left\{ \left(g \times \eta + \frac{\gamma}{n} \right) \frac{v}{u} + \frac{e}{E} \left(\frac{v - 1}{I} \right) + \frac{b}{d} \right\} \frac{m}{\omega} = \mathcal{O}
\]

(at Magic Momentum)
\[
\left(E \times n + E \right) \frac{c}{u} = \omega = \omega
\]

\[
\left\{ \left(E \times n + E \right) \frac{c}{u} + \frac{c}{E \times B} \left(a - I \right) + \frac{m}{\epsilon} \right\} \frac{\omega}{\omega} = \omega
\]

Cancelling E-2 With a Radial E-Field
Parameter Values of Muon EDM Experiment

- Radial E-Field: \(E = \frac{cBa\beta}{1 - (1 + a)\beta^2} \)
 \(E = 2 \text{ MV/m} \)

- Dipole B-field: 1/6 of current value
 \(B \approx 0.24T \)

- Muon Momentum:
 \(P_{\mu} \approx 500 \text{ MeV/c}, \gamma \approx 5 \)
Spin Precession in EDM Ring
(Top View)
\[\chi^2 = 1.1028, \quad \text{ndf} = 1.199 \]

\[N_0 = 7.81026 \times 10^6 \pm 3.64891 \times 10^2 \]

\[\tau_\mu = 1.10051.33 \pm 0.000282 \mu s \]
$\chi^2 = 1.1087, \quad \text{ndf.} = 1.199$

$N_0 = 7.80961 \times 10^6 \pm 3.69917 \times 10^2$

$\tau_\mu = 10.993736 \pm 0.000300 \mu s$
Sensitivity:

\[d_\mu = \frac{n}{2} \frac{e^h}{2mc} \approx n \times 4.7 \times 10^{-14} \text{ e. cm} \]

Error in \(n \):

\[\sigma_n = \frac{1}{\gamma T A_1 A \sqrt{2 N_{\text{tot}}}} \]

\(\gamma T = 11 \mu s \)

\(A \): muon decay asymmetry weighted with energy (0.5)

\[A_1 = \frac{\beta B e}{2 m} \approx 10^8 s \]

\(N_{\text{tot}} \): Total # of detected decays

\[\sum n \approx 3.5 \times 10^{-11} \text{ for } 1.5 \times 10^{15} \text{ decays} \]

\[d_\mu \leq 1.5 \times 10^{-24} \text{ e. cm} \]
Modifications:

- Increase Pion/Muon Flux per P.O.T.
- Modify Existing Beamline
- New Inflector (Normal Conducting)
- Use Magnetic (Weak/Strong) Focusing in g-2 Ring
- Flat Radial E-field to Cancel g-2 Precession
- Deuterons as Inclinometer
Increase Pion/Muon Flux per P.O.T.:

- Need to work at Low Muon Momentum

 (Off magic Momentum) of 0.5GeV/c With a Required

 DC Radial Electric Field: \(E = \frac{a B (\gamma^2 - 1)}{\beta} \approx 2 \text{ MV/m} \)

- Pion Momentum: 0.9GeV/c (Select Backward Decay Muons)

- Use Lithium Lens D/S of Target for Pion Focusing
Systematics

- “Vertical” Component of E-field
- De-phasing due to Radial E-field
- Proton or Pion Contamination of Beam (flash)
- Early to Late Counting Effects (Linearity)
- Muon Losses as a Function of Time
- Stored Positrons at Injection
- Horizontal and Vertical Betatron Oscillations Coupling
<table>
<thead>
<tr>
<th></th>
<th>Muon</th>
<th>Deuteron</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10^8 (10^{14} POT)</td>
<td>5×10^8 (dp/p=10^{-4})</td>
</tr>
<tr>
<td>AGS Rep rate</td>
<td>0.4 Hz</td>
<td>5 Hz</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>0.3</td>
<td>0.26</td>
</tr>
<tr>
<td>Interaction Time</td>
<td>50 μs</td>
<td>5 ms</td>
</tr>
<tr>
<td>Signal mωt (10^{-24} e.cm)</td>
<td>10^{-7} rad</td>
<td>10^{-6} rad</td>
</tr>
<tr>
<td>Background mωt (10^{-8} E)</td>
<td>10^{-7} rad</td>
<td>7×10^{-5} rad</td>
</tr>
</tbody>
</table>
De-phasing of Spin

Radial E-field \(\nu \frac{1}{r} \)

Time \(t = 0 \):
- \(S \rightarrow +2\% \)
- Central momentum
- \(P \rightarrow -2\% \)

\(\mu : \ t = 150\mu s \):
- \(S \uparrow 90^\circ \rightarrow P \)
- \(P \downarrow 90^\circ \rightarrow S \)
- \(+2\% \)
- \(-2\% \)

\(l : \ 5 ms \)
\(\frac{\Delta P}{P} = 10^{-4} \)
Probing Vertical E-Field Component

- Inject Deuterons-Inclinometer:
 a) Spin Precession vs Time
 b) Vertical Displacement

- Laser Interferometer to Monitor Stability
6 Axis per Laser Head

The Plane mirror interferometers 10706B will measure the change in spacing of the 2 silvered surfaces. The detailed optical layout for all 40 measurement axis is done by the integrator. Other optical components such as Beam Benders 10707A and Adjustable Mounts, 10710A & 10711A, are available to aid in layout and alignment.
Summary

- A New, Sensitive Method of Probing EDM
- Second Generation (Muon)-Very Exciting
- Can Make Use of High Muon Flux