A Measurement of the Branching Ratio
of $D^0g \ K^+\pi^- \ to \ D^0g \ K^-\pi^+$

Jonathan Link
University of California Davis

DPF Meeting
August 10, 2000
FOCUS is a Charm Photoproduction Experiment at Fermilab

This design provides excellent vertex resolution, particle id and momentum resolution.

More than 1 million fully reconstructed D mesons!
$D^0 g K^+ \pi^-$ Can Occur Through

Double Cabibbo Suppression (DCS) or Mixing Followed by a Cabibbo Favored Decay (CF)

Standard Model predictions for contributions to the relative branching ratio.

$$\tan^4 ?_c \approx 0.25\% \quad 10^{-7} \text{ to } 10^{-3}$$

In this study we measure the branching ratio $r_{DCS} = DCS/CF$.
Event Selection

- Very loose Cerenkov based particle id cuts on K and π.
- The D^0 candidate is used as a seed to find the production vertex.
- The production vertex has at least 2 tracks in addition to the D^0.
- The production vertex is required to be within 1σ of target material.
- Production and decay vertices are required to be well formed (CL>1%).
- D^0 daughter tracks inconsistent with coming from the production vertex.
- The vertex separation $L/\sigma_L>5$.
- Cut $K\pi$ pairs with high momentum asymmetry and low D^0 momentum.
First You Have to Tag the D^0 Flavor

- The decay $D^{+*}g \ D^0\pi^+$ is used to identify the D^0 flavor.
- So we study the D^*-D^0 mass difference.
Monte Carlo Background Studies

Backgrounds from other D^0 decays peak in the D^* signal region!

If not dealt with these backgrounds could seriously bias an analysis.
The Worst BG is CF $K\pi$ Double Mis-id

The double mis-id Δm is indistinguishable from the correctly identified signal.

So we use a tight Cerenkov based mis-id cut in a $\pm 4\sigma$ window about the D^0 with $K\pi$ reconstructed as πK.
How do we Treat These Mis-id BG’s?

• We could target K^+K^- and $\pi^+\pi^-$ just like we did with $K^-\pi^+$.
 This carves holes in the D^0 sidebands.

• We could use hard Cerenkov based id cuts everywhere.
 A big hit in yield and very little improvement in S/N.

• Try something completely different.
A New Method

- Divide the data into 1 MeV wide bins in Δm, and fit the D^0 in each bin.
- Fit the KK and $\pi\pi$ reflections with Monte Carlo events.
- Fit D^0 to a gaussian.
- Fit BG to a polynomial.

A total of 80 fits!
Fit the Δm Distributions

- Fitted D^0 yields are plotted in the appropriate Δm bins.
- Background is fit to: $f(m) = a(m-m_\pi)^{1/2} + b(m-m_\pi)^{3/2}$.
- DCS signal is fit directly to the CF histogram signal region.

$\begin{align*}
\text{Yield} &= 35901 \pm 196 \\
\text{Yield} &= 172.9 \pm 33.7 \\
\end{align*}$

$r_{\text{DCS}} = (0.482 \pm 0.093)\% \quad \text{Preliminary!}$
Possible Effects of Mixing

• If charm mixing is significant then decay rate as a function of time is:

\[r(t/\tau) = \left\{ r_{DCS} + \sqrt{r_{DCS}} y'(t/\tau) + \left(\frac{y'^2+y'^2}{4}\right)(t/\tau)^2 \right\} e^{(-t/\tau)} \]

• With \(x' \equiv x \cos d + y \sin d \), \(y' \equiv y \cos d - x \sin d \),

\(x \equiv \frac{\Delta m}{\Gamma} \), \(y \equiv \frac{\Delta \Gamma}{2\Gamma} \) and \(\delta \) is the strong phase.

• The measured BR depends on the lifetime acceptance of the analysis.

• We use a \(D^0g K^-\pi^+ \) Monte Carlo to study the effects of mixing on the measured BR \((r_{meas}) \).

\[\left(D^0 \rightarrow K^+p^- \right)_{\text{data}}^{\text{expected}} = \sum_i W(t_i, x', y', r_{DCS})^{\text{MCaccepted}} \]

• Where

\[W(t, x', y', r_{DCS}) = \left(\frac{CF_{\text{data}}^{\text{accepted}}}{CF_{\text{MC}}^{\text{accepted}}} \right) \left(r_{DCS} + \sqrt{r_{DCS}} y'(t/\tau) + \left(\frac{y'^2+y'^2}{4}\right)(t/\tau)^2 \right) \]
Effects of Mixing Continued

• We find…

\[r_{meas} = r_{DCS} + \sqrt{r_{DCS}} y′⟨t / t⟩ + \frac{(x′^2 + y′^2)}{4} ⟨(t / t)^2⟩ \]

Average lifetime and average lifetime squared in units of the \(D^0\) lifetime for accepted events in the Monte Carlo.

• When solved for \(r_{DCS}\) as a function \(x′, y′\) and \(r_{meas}\) yields:

This measurement

FOCUS

\(y\) from Lifetime Difference \((δ = 0)\)

CLEOII.V

True \(r_{DCS}\) as a function of \(y′\) with \(x′ = 0\)
Conclusions and Future Prospects

• We measure, in the absence of mixing,
 \[r_{\text{DCS}} = (0.482 \pm 0.093)\% \text{ (Statistical Error Only)} \]
 Preliminary!

• This measurement is statistically on par with the recent
 CLEO II.V result of \(r_{\text{DCS}} = (0.332 \pm 0.064 \pm 0.040)\% \).
 (No Mixing)

• Mixing studies based on the lifetime dependence of \(r_{\text{DCS}} \).

• Study other \(D^0 \) DCS decay modes (\(K^+\pi^-\pi^0 \) and \(K^+\pi^-\pi^+\pi^- \)).