Production of η_c in two photon interactions at CLEO

Todd K. Pedlar
The Ohio State University

DPF 2000, Columbus
August 9, 2000
OUTLINE

✔ Motivation for the study of η_c
✔ Expectations (theory & current experiment - PDG98)
✔ Two-photon production of η_c at CLEO
✔ CLEO Results for η_c Resonance Parameters
✔ Comparison to Theoretical predictions
✔ Comparison to Other Recent Experimental Results
✔ Conclusions
MOTIVATION

\(\eta_c \) is the ground state of the charmonium system (cc). \(\Delta M(1S) \) reveals the strength of the spin-spin coupling in the charm quark sector. The total width \((\Gamma(\eta_c) = \Gamma_{gg}(\eta_c)) \), together with the 2\(\gamma \) partial width, gives an indication of the strength of \(\alpha_s(m_c) \).

Note: The thickness of the line representing each charmonium state is roughly proportional to the state's observed total width. States which are labeled in cyan are either unconfirmed or as yet unobserved in any experiment.

August 9, 2000 Todd K. Pedlar
Theoretical & experimental expectations

Expect hyperfine splitting to be $\sim 110-130$ MeV

This calculation depends on:

- value of $\alpha_s(m_c)$ (contributes ± 10 MeV)
- choice of potential (also ± 10 MeV)

Particle Data Group 98 gives:

$$M(\eta_c) = 2979.8 \pm 1.8 \text{ MeV}$$

$$\Delta M(1S) = 117.1 \pm 2.1 \text{ MeV}$$

August 9, 2000

Todd K. Pedlar
Theoretical & Experimental Expectations

Simple ratios possible for comparison to pQCD (at NLO)

\[
R_1 \equiv \frac{\Gamma_{gg}}{\Gamma_{\gamma\gamma}} = \frac{9\alpha_s^2}{8\alpha_s} \frac{(1 + 4.8\alpha_s / \pi)}{(1 - 3.4\alpha_s / \pi)} = 3.4 \times 10^3 \quad \text{for } \alpha_s(m_c) = 0.30
\]

\[
R_2 \equiv \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\psi\to ee}} = \frac{4}{3} (1 + 1.96\alpha_s / \pi) \frac{M(\psi)^2}{2(m_c^2)} \left|\Psi_{\eta_c}(O)\right|^2 = 1.57
\]

for \(\alpha_s(m_c) = 0.30 \) and assuming \(\left|\Psi_{\eta_c}(O)\right|^2 = \left|\Psi_{J/\psi}(O)\right|^2 \)

August 9, 2000

Todd K. Pedlar
Current results compared to theory

Using PDG98 results, and taking $\alpha_s(m_C) = 0.30$

$$R_1 \equiv \frac{\Gamma_{gg}}{\Gamma_{\gamma\gamma}} = \frac{13.2^{+3.8}_{-3.2} \text{ MeV}}{7.5^{+1.6}_{-1.4} \text{ keV}} = (1.8 \pm 0.6) \times 10^3$$

recall $R_1 \text{(theory)} = (3.4) \times 10^3$

$$R_2 \equiv \frac{\Gamma_{\gamma\gamma}}{\Gamma_{(J/\psi \rightarrow ee)}} = \frac{7.5^{+1.6}_{-1.4} \text{ keV}}{5.26 \pm 0.37 \text{ keV}} = 1.43^{+0.31}_{-0.27}$$

recall $R_2 \text{(theory)} = 1.57$

August 9, 2000

Todd K. Pedlar
Predictions for the present measurements

Using $\Gamma(J/\psi \to e^+e^-) = 5.26 \pm 0.37$ keV, and R_2,

$\Rightarrow \Gamma_{\gamma\gamma} = 8.2 \pm 0.6$ keV

Using $\Gamma_{\gamma\gamma} = 8.2 \pm 0.6$ keV (pQCD) and R_1,

$\Rightarrow \Gamma_{\text{tot}} = 26 \pm 6$ MeV

Using $\Gamma_{\gamma\gamma} = 7.5^{+1.6}_{-1.4}$ keV (PDG98) and R_1,

$\Rightarrow \Gamma_{\text{tot}} = 28 \pm 6$ MeV

in addition, sum-rule models (Shifman, et al.)

tend to favor Γ_{tot} of $15 - 25$ MeV

August 9, 2000 Todd K. Pedlar
Two Photon Physics at CLEO

CLEO operates at the $\Upsilon(4S)$ - $E_{cm} = 10.58$ GeV

Two photon interactions arise from "double Bremstrahlung" events:

$e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-\eta_C$

2γ collisions: C-even states

$cc: \chi_2, \chi_0, \eta_C$ and η'_C

State is formed with low PT

$\text{yield is } \alpha L_{\gamma\gamma} \times \Gamma_{\eta_C \rightarrow \gamma\gamma}$

August 9, 2000

Todd K. Pedlar
Study of η_c at CLEO

- Choose clean final state with large Branching fraction:
 $$\eta_c \rightarrow K_s^0 K^{\pm} \pi^{\mp} : \text{Br} = (1.8 \pm 0.6)\%$$

- Measure $M(\eta_c)$, $\Gamma(\eta_c)$ and $\Gamma_{yy}(\eta_c)$ together

- Selection criteria (briefly)
 - low total PT
 - low total visible E
 - displaced vertex for K_s
 - total efficiency @ 10%
CLEO data at a glance

CLEO has obtained each of $M(\eta_c)$, $\Gamma(\eta_c)$ and $\Gamma_{\gamma\gamma}(\eta_c)$ by ML fit. The two data sets have been fit simultaneously, constraining the fit parameters.
CLEO results summary

<table>
<thead>
<tr>
<th></th>
<th>CLEO</th>
<th>PDG98</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(\eta_c)$</td>
<td>$2980.4 \pm 2.3 \pm 0.6$ MeV</td>
<td>2979.8 ± 2.1 MeV</td>
</tr>
<tr>
<td>$\Gamma_{\gamma\gamma}(\eta_c)$</td>
<td>$7.6 \pm 0.8 \pm 0.4 \pm 2.3$ keV</td>
<td>$7.5^{+1.6}_{-1.4}$ keV *</td>
</tr>
<tr>
<td>$\Gamma_{\text{tot}}(\eta_c)$</td>
<td>$27.0 \pm 5.8 \pm 1.4$ MeV</td>
<td>$13.2^{+3.8}_{-3.2}$ MeV</td>
</tr>
</tbody>
</table>

Recall the theoretical predictions:

- $\Gamma_{\gamma\gamma} = 8.2 \pm 0.6$ keV
- $\Gamma_{\text{tot}} \approx 27 \pm 6$ MeV (NLO pQCD)
- $\Gamma_{\text{tot}} \approx 15 - 25$ MeV (sum-rule)

As an added attraction, our data, along with R_1, may be used to estimate $\alpha_s(m_c) = 0.285 \pm 0.025$

Caveat - NOT renormalization scheme or scale independent

Advert: This has been submitted to PRL, and may be found in preprint form at hep-ex/0006026

August 9, 2000

Todd K. Pedlar
Comparison to other experimental results

While CLEO has measured both Γ, Γ_{yy} and $M(\eta_c)$, other results since PDG98 have been presented by:

BES: (hep-ex/0002006, PRD 60 072001) Γ and $M(\eta_c)$
E835: (Photon 99) Γ, Γ_{yy} and $M(\eta_c)$
L3: (Phys. Lett. B461, 1999, 155) only Γ_{yy}
DELPHI: (ICHEP 2000) only Γ_{yy}
Comparison to other experimental results

Mass

Errors include common error from $J/\psi \rightarrow \eta \eta$

$\gamma \gamma$ Partial Width

August 9, 2000

Todd K. Pedlar
Comparison to other experimental results

Total Width

Included in PDG 98

- CBAL
- E760

PDG

- BES
- E835

new average

CLEO

August 9, 2000

Todd K. Pedlar
Comparison to other experimental results

<table>
<thead>
<tr>
<th>Experiment</th>
<th>mass (MeV)</th>
<th>Total width (MeV)</th>
<th>$\gamma\gamma$ width (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUS</td>
<td>-</td>
<td>-</td>
<td>11.3 +/- 4.2</td>
</tr>
<tr>
<td>CLEO(90)</td>
<td>-</td>
<td>-</td>
<td>5.9 +/- 1.8 +/- 1.9</td>
</tr>
<tr>
<td>CBAL</td>
<td></td>
<td>11.5 +/- 4.5</td>
<td>-</td>
</tr>
<tr>
<td>Mk III</td>
<td>2980.6 +/- 1.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DM2</td>
<td>2974.4 +/- 1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E760</td>
<td>2988.3 +/- 3.3 -3.1</td>
<td>23.9 +/- 12.6 -7.1</td>
<td>6.7 +/- 2.4 -1.7 +/- 2.3</td>
</tr>
<tr>
<td>PDG98</td>
<td>2979.8 +/- 2.1</td>
<td>13.2 +/- 3.5</td>
<td>7.5 +/- 1.5</td>
</tr>
<tr>
<td>BES</td>
<td>2976.3 +/- 3.1</td>
<td>11.0 +/- 8.1 +/- 4.1</td>
<td>-</td>
</tr>
<tr>
<td>E835</td>
<td>2985.1 +/- 2.1</td>
<td>22.4 +/- 7.8 -6.4</td>
<td>4.1 +/- 1.7 -1.4 +/- 1.5</td>
</tr>
<tr>
<td>L3</td>
<td>-</td>
<td>-</td>
<td>6.9 +/- 1.9 +/- 2.0</td>
</tr>
<tr>
<td>DELPHI</td>
<td>-</td>
<td>-</td>
<td>10.9 +/- 2.7 +/- 3.4</td>
</tr>
<tr>
<td>CLEO(00)</td>
<td>2980.4 +/- 2.4</td>
<td>27.0 +/- 6.0</td>
<td>7.6 +/- 0.9 +/- 2.3</td>
</tr>
<tr>
<td>Average</td>
<td>2981.1 +/- 1.7</td>
<td>18.0 +/- 3.0 -2.7</td>
<td>7.1 +/- 0.8 -0.7 +/- 2.0</td>
</tr>
</tbody>
</table>

August 9, 2000
Todd K. Pedlar
Comparison to other experimental results

One of the more interesting features of these results is our measurement of $\Gamma(\eta_c)$. E835, an experiment using a completely different technique, $PP \rightarrow \eta_c \rightarrow \gamma\gamma$, reports a very similar width, also significantly larger than the PDG value.

In E835, mass & width measured by "scanning" the momentum of the antiproton beam across the resonance width.

August 9, 2000

Todd K. Pedlar
Comparison to other experimental results

The present CLEO result, $\Gamma = 27.0 \pm 6.0 \text{ MeV}$

cmpares very well with E835’s direct width measurement of $\Gamma = 22.4^{+7.8}_{-6.4} \text{ MeV}$

August 9, 2000 Todd K. Pedlar
Conclusions

- CLEO has measured $M(\eta_c)$, $\Gamma(\eta_c)$ and $\Gamma_{\gamma\gamma}(\eta_c)$ in 2γ collisions
- Results for $M(\eta_c)$ and $\Gamma_{\gamma\gamma}(\eta_c)$ are consistent with those from PDG98, with comparable errors
- Most interestingly, the result for $\Gamma(\eta_c)$, $27.0 \pm 5.8 \pm 1.4$ MeV, is significantly different than the PDG98 average of $13.2^{+3.8}_{-3.2}$ MeV

It does, however, compare very well with the heretofore “anomalously large” width reported by E760/E835 (and is closer to theoretical predictions)

For more details, see: hep-ex/0006026