Power-Suppressed Thermal Effects from Heavy Particles

Eric Braaten
Yu Jia
The organization of this talk:

- Introduction
 - Review Matsumoto and Yoshimura's work.
 - Motivation to reconsider their model. Why Effective-Field-Theory approach?
- Bosonic model with pair annihilation.
 - Derive effective Lagrangian
 - Derive free energy density and energy density.
- Effective Hamiltonian
 - Some issues about Field-redefinition.
 - Calculate thermal average of Hamiltonian.
- Summary.
Introduction

Heavy particle immersed in the thermal environment of light particles.

Conventional wisdom:

\[n_\phi = \left(\frac{MT}{2\pi} \right)^{3/2} e^{-M/T} \quad T \ll M \]

↑ Boltzmann-suppressed.

"New" contribution: (unstable heavy particle)

Off-shell effects: dominant in the tail \((w \sim T)\) of Breit-Wigner spectrum

\[n_\phi = \int \frac{d^3p}{(2\pi)^3} \int_0^\infty dw \frac{\Gamma/2\pi}{(w - E(p))^2 + (\Gamma/2)^2} \frac{1}{e^{w/T} - 1} \]

\[\approx \frac{\Gamma}{4\pi^3 M^2} \int_0^\infty dw \frac{1}{e^{w/T} - 1} \int_0^w dp \; p^2 \]

\[= \frac{\pi}{180} \frac{\Gamma}{M^2} T^4 \quad \text{for} \quad T \ll \Gamma \ll M \]

↑ power-suppressed
When $T < \langle M$, the power-suppressed term can easily dominate over Boltzmann-suppressed term.

Cosmological implication:

- Much larger relic abundance of WIMP than conventional prediction.
- Prolong the freeze-out time.
- Put tighter constraint on the properties of the heavy particles which are candidate for cold dark matter.
Method #1: Integrate out light fields to derive quantum kinetic equation.

Influential functional method
Hartree-Fock approx.

very hard to follow.

Method #2:

Direct thermal-field-theory calculation.

pretty clear, but rather complicated.

Consider a model in which heavy particles are stable, can only pair annihilate into light particles.
prior to renormalization. The propagator in thermal medium $\Delta_{\phi,\chi}(y)$ is periodic in the Euclidean time y, with a period $\beta = 1/T$, hence giving the range of integration $0 < \beta$ as explicitly indicated. The Fourier transformed propagator has the well known form, $\Delta(\omega_n, p) \sim 1/(-\omega_n^2 + p^2 + M^2)$ with discrete $\omega_n = 2\pi i n/\beta$ ($n = 0, \pm 1, \pm 2, \cdots$). The other contributions from Fig.2 are exponentially suppressed by $e^{-M/T}$ with M the heavy ϕ particle mass, the factor familiar in the conventional approach.

As usual, one rewrites eq.(11) using the Fourier transform. The resulting discrete energy sum over ω_n can be converted to a contour integral of this variable $z = \omega_n$, using the function $1/(e^{eta z} - 1)$. After some algebraic manipulation, one finds that to $O[\lambda^2]$

$$\rho^{(2)}_\phi \sim -\lambda^2 \int dk \, dk' \, dp \, dp' (2\pi)^3 \delta(p + p' + k + k') \frac{2\omega_p}{\omega_p + \omega_{p'} - \omega_k - \omega_{k'}} \left[f_p f_{p'} (1 + \frac{1}{f_k}) (1 + \frac{1}{f_{k'}}) - (1 + f_p)(1 + f_{p'}) f_k f_{k'} \right]$$

$$+ 2 \frac{f_p f_{p'} (1 + \frac{1}{f_k}) f_{k'} - (1 + f_p)(1 + f_{p'}) f_k (1 + f_{k'})}{(\omega_p + \omega_{p'} - \omega_k + \omega_{k'})^2}$$

$$+ f_p f_{p'} f_k f_{k'} - (1 + f_p)(1 + f_{p'})(1 + f_k)(1 + f_{k'}) \frac{1}{(\omega_p + \omega_{p'} + \omega_k + \omega_{k'})^2}$$

$$+ 2 \frac{f_p (1 + f_{p'})(1 + \frac{1}{f_k}) (1 + f_{k'}) - (1 + f_p) f_{p'} f_k f_{k'}}{(\omega_p - \omega_{p'} - \omega_k - \omega_{k'})^2}$$

$$+ 2 \frac{f_p (1 + f_{p'})(1 + f_{k'})(1 + f_k) - (1 + f_p) f_{p'} (1 + f_{k'}) f_k}{(\omega_p - \omega_{p'} + \omega_k - \omega_{k'})^2} \right], \quad (12)$$

We dropped minor Boltzmann suppressed terms to obtain this result. A shorthand notation for the phase space integral $dk = d^3k/(2\pi)^3 2\omega_k$ was used here, and $f_{p, p'}$ are the occupation number for the heavy ϕ particle, while $f_{k, k'}$ are that for the light χ particle;

$$f_p = \frac{1}{e^{\sqrt{p^2 + M^2} / T} - 1}, \quad f_k = \frac{1}{e^{k/T} - 1}.$$ \hspace{1cm} (13)

A similar form to eq.(12) was derived for the proper self-energy in ref.[5]. For simplicity we assume that the χ mass $m_\chi \ll T$, and indeed take $m_\chi = 0$ here.

Terms containing f_p or $f_{p'}$ in eq.(12) are Boltzmann suppressed by $e^{-M/T}$. Drop-
Bosonic Pair-Annihilation Model:

\[L(x, \phi) = L_x + \frac{1}{2}(\partial \mu \phi)^2 - \frac{i}{2} M^2 \phi^2 - \frac{1}{4!} \lambda \phi^4 x^4. \]

where \(L_x = \frac{1}{2}(\partial \mu x)^2 - \frac{1}{4!} \lambda x x^4. \)

Define \(H_\phi = \frac{1}{2} \dot{\phi}^2 + \frac{i}{2} (D \phi)^2 + \frac{1}{2} M^2 \phi^2. \)

\[H_x = \frac{1}{2} \dot{x}^2 + \frac{i}{2} (D x)^2 + \frac{1}{24} \lambda x x^4. \]

\[H_{\text{int}} = \frac{1}{4} \lambda \phi^4 x^4. \]

Interpret energy density \(\rho \) as

\[\rho = \langle \hat{H}_\phi \rangle = \frac{\text{tr}(H_\phi e^{-\beta H})}{\text{tr} e^{-\beta H}} - (T = 0 \text{ contribution}) \]

Besides zeroth-order result:

\[\rho_\phi = M \left(\frac{M T}{2 \pi} \right)^2 e^{-M/T}. \]

They found the power-suppressed terms

\[\delta \rho_\phi = \frac{1}{69120} \lambda^2 \frac{T^6}{M^2}, \quad CANCEL! \]

\[\delta \rho_x = -\frac{1}{69120} \lambda^2 \frac{T^6}{M^2}. \]

\[\delta \rho_{\text{int}} = -\frac{\pi^2}{64800} \lambda^2 \frac{T^3}{M^4}. \]
Influential functional method needs integrating out the light fields, thus get a highly nonlocal action of heavy fields.

Is this natural?

When $T \ll M$, we barely can "see" any heavy particles which are on shell, what we can feel are only light particles, so maybe integrating out heavy particles is more natural strategy.

\Rightarrow low energy Effective Theory.
A quote from R. Shankar:

"... and in addition to their beauty, effective field theories are also very *effective* in answering certain questions that the more microscopic versions cannot."
At low T, the characteristic energy scale of x is T, the resolution length is about $1/T$.

But Φ are highly virtual, with lifetime $1/\lambda$.

Since $1/T \gg 1/\lambda$.

The x particle cannot probe the heavy loop very accurately.

Heavy lines shrink to points.
Construct low-energy EFT.

standard way — matching

e.g. for \(\text{Left} = \chi \phi^+ \phi \phi^- \phi^+ \phi^- \).

\[
\begin{align*}
2i \left(p_1^2 (-p_2 \cdot p_3 - p_2 \cdot p_4 + p_3 \cdot p_4) \\
+ p_2^2 (-p_1 \cdot p_3 - p_1 \cdot p_4 + p_3 \cdot p_4) \\
+ p_3^2 (p_1 \cdot p_2 - p_1 \cdot p_4 - p_2 \cdot p_4) \\
+ p_4^2 (p_1 \cdot p_2 - p_1 \cdot p_3 - p_2 \cdot p_3) \right)
\end{align*}
\]

Matching with full theory

\[\chi \text{ light}\]

\[\phi \text{ heavy}\]
We're lucky here, since interaction is $x^2 \phi^2$.

Gaussian Functional Integral.

$$e^{i \text{Sett}(x)} = \int D\phi \ e^{i \int d^nx \ L}$$

$$\text{Sett} = \int d^nx \ L_x + \frac{i}{2} \ln \det (-\partial^2 - M^2 - \frac{\lambda}{2} x^2 + i\varepsilon)$$

$$= \int d^nx \ L_x + \frac{i}{2} \ln \det (-\partial^2 - M^2 + i\varepsilon) + \sum_{n=1}^{\infty} \text{Seff}^{(n)}(x).$$

where $\text{Seff}^{(n)}(x) = -\frac{i\lambda^n}{2^{n+1} \ n} \ \text{tr} \left[(-\partial^2-M^2+i\varepsilon)^{-n} x^2 \right].$

Equivalent to one-loop matching. Much easier.

Derivative Expansion

E.g. $\text{Seff}^{(2)}(x) = (\log \text{an infraredly)} X^2$

$$+ \frac{\lambda^2}{16 (4\pi)^2} \sum_{n=1}^{\infty} \frac{(-1)^n \ \pi! (n-1)!}{(2n+1)! \ M^{2n}} \int d^nx \ x^2 (\partial^2)^n x^2.$$

\[\text{Sett}^{(1)} \quad \text{Sett}^{(2)} \quad \text{Sett}^{(3)}\]
We then get the effective Lagrangian:

\[
\mathcal{L}_{\text{eff}} = \mathcal{L} - \frac{\lambda^2}{96(4\pi)^2 M^2} \chi^2 \partial^2 \chi^2 + \frac{\lambda^2}{(960)(4\pi)^2 M^4} \chi^2 (\partial^2 \chi)^2 \chi^2 - \frac{\lambda^3}{96(4\pi)^2 M^2} \chi^6 + \cdots
\]

↑ NEW! \sim O(\lambda^3)

Free-energy density:

\[
\langle \chi^2 \partial^2 \chi^2 \rangle : \quad \delta F = 0
\]

\[
\langle \chi^2 (\partial^2 \chi)^2 \rangle : \quad \delta F = \frac{1}{1024} \frac{16}{225} \frac{\lambda^2 T^4}{M^4} F_{\text{free}}
\]

\[
\langle \chi^6 \rangle : \quad \delta F = -\frac{1}{1024} \frac{25}{48 \pi^4} \frac{\lambda^3 T^2}{M^2} F_{\text{free}}
\]

where \(F_{\text{free}} = -\frac{\pi^2}{12} T^4 \) — free energy density of ideal gas of free spin-0 boson.

Using \(p = -T^2 \frac{\partial}{\partial T} (\frac{F}{T}) \):

\[
\delta p = \frac{1}{1024} (\frac{112}{675} \frac{\lambda^2 T^4}{M^4} \left(1 - \frac{125}{144 \pi^4} \frac{\lambda^3 T^2}{M^2} + \cdots \right) F_{\text{free}}
\]

where \(F_{\text{free}} = \frac{\pi^2}{30} T^4 \).

Notice absence of \(O(\lambda^2 \frac{T^6}{M^6}) \) term.

Recall Cancellation of \(\delta p \phi \) and \(\delta p x \) in M&Y's paper!
Effective Hamiltonian

Trouble in using $\text{Eff} = \hbar \frac{\partial \text{Eff}}{\partial \chi} = \text{Eff}$.

Since \text{Eff} contains term like

$$\chi^2 (\partial^2 \chi) \chi = 4 \partial^2 \chi \partial^2 \chi \chi + 8 \chi \partial^2 \chi \partial^2 \chi + 4 \chi \partial^2 \chi \partial^2 \chi$$

Depend on second derivative of χ.

However notice All the operators which contain $\partial^2 \chi$
don't make contribution to dynamics!

\[\times \text{scattering amplitude} \propto \sum_{i=1}^{4} \frac{p_i^2}{s} \]

$\chi^2 \partial^2 \chi \chi$

$= 4 m^2 \to 0$

EASY see from the Feynman Rule:

$\partial^2 \chi \to -p^2 (\overrightarrow{p})$

? How can we deal with these non-dynamical yet annoying operators?
Use our degree of freedom to redefine field to remove these non-dynamical operators.

Equation of motion: \((\partial^2 + m^2) \chi = 0\)

\[\delta L_{\text{free}} = -\delta \chi (\partial^2 + m^2) \chi. \]

\[\Rightarrow G(\chi, \ldots) \partial^2 \chi \text{ replaced by } -m^2 G(\chi, \ldots) = 0 \]

We found under such field-redefinition:

\[\chi \rightarrow \chi - \frac{\lambda^2}{72(4\pi)^2 M^2} \chi^3 + \frac{\lambda^2}{720(4\pi)^2 M^4} \partial^2 \chi^2 + \ldots \]

The three pieces of redundant operators could be eliminated.

New effective Lagrangian

\[L_{\text{eff}} = \chi + \frac{\lambda^2}{240 (4\pi)^2 M^4} (\partial \chi \partial^2 \chi)^2 - \frac{\lambda^3}{96 (4\pi)^2 M^2} \chi^6 + \ldots \]

\[\Rightarrow \text{Now we can directly use Noether prescription} \]

\[H_{\text{eff}} = \partial \chi + \delta \text{pow.} \]

\[\delta \text{pow} = \frac{\lambda^2}{240 (4\pi)^2 M^4} (\partial \chi \partial^2 \chi) \left(3 \chi^2 + (\partial \chi)^2 \right) \]

\[+ \frac{\lambda^3}{96 (4\pi)^2 M^2} \chi^6 + \ldots \]
Use

$$\langle 0 \rangle_T = \frac{\text{Tr}(0 \ e^{-\beta H_T})}{\text{Tr} e^{-\beta H_4}} = \frac{1}{Z} \int \mathcal{D}x \ 0 \ e^{-\int_0^b \text{Left}(x) \ dx + \text{Right}(x)}$$

The subtlety is here we just assume this equation holds for effective theory. We cannot prove it.

$$\delta S_x = \frac{1}{1024} \left(\frac{16}{135} \lambda^2 \frac{T^4}{M^4} - \frac{25}{24} \lambda^2 \left(\frac{3}{32} \right) \right) \mathcal{P}_{\text{tree}}.$$

$$\delta S_{\text{pow}} = \frac{1}{1024} \left(\frac{32}{675} \lambda^2 \frac{T^4}{M^4} + \frac{25}{144} \lambda^2 \left(\frac{7}{32} \right) \right) \mathcal{P}_{\text{tree}}.$$

$$\delta S_x + \delta S_{\text{pow}}$$ reproduce our previous result of S_P from free energy density calculation.
A Bonus.

Notice \(x^2 \partial x^+ = x^2 \partial^+ x^+ \approx x^2 \partial x \partial^+ x \).

It doesn't cause any trouble to get \(\text{Leff} \) from \(\text{Leff} \). Let's see what happens if we don't use field-redefinition to kill it.

\[
L_{\text{pow}} \rightarrow L_{\text{pow}} + \frac{\lambda^2}{24(4\pi)^2 M^2} x^2 (\dot{x}^2 + 3 (\dot{\phi} x)^2).
\]

\[
L_{\text{eff}} \rightarrow L_{\text{eff}} + \frac{\lambda^2}{24(4\pi)^2 M^2} x^2 \partial x \partial^+ x.
\]

Then our \(\delta p_x \), \(\delta p_{\text{pow}} \) **exactly** recover Matsumoto and Yoshimura's result:

\[
\delta p_p = \frac{1}{69120} \frac{\lambda^2 T^6}{M^2} \quad (= \text{our } \delta p_{\text{pow}})
\]

\[
\delta p_x = -\frac{1}{69120} \frac{\lambda^2 T^6}{M^2} \quad (= \text{our } \delta p_x)
\]

Since \(x^2 \partial^+ x^+ \) can be eliminated by a field redefinition, so neither of their \(\delta p \) can have any physical significance.
Another good example: Kong & Ravndal 1993

In QED, integrate out the electron field

$$\text{Leff} = -\frac{i}{4} (F_{\mu \nu})^2 + \frac{\alpha}{\pi \hbar \gamma m_e} F_{\mu \nu} \partial^2 F^{\mu \nu} \quad \text{Uehling term}$$

$$+ \frac{\alpha}{\pi \hbar \gamma m_e} \left[(F_{\mu \nu} F^{\mu \nu})^2 + \frac{2}{4} (F_{\mu \nu} F^{\mu \nu})^2 \right] + \ldots \quad \text{Euler-Heisenberg term}.$$

The Uehling term can be eliminated by following field redefinition:

$$A^\mu \rightarrow A^\mu + \frac{\alpha}{3 \pi \hbar \gamma m_e} \partial^2 A^\mu + \ldots,$$

so the leading term contributing to energy density is of order $\frac{\alpha^2 T^4}{m_e^2}$, instead of order $\frac{\alpha T^6}{m_e^2}$, as naively expected.
Summary.

1. EIT approach affords an efficient way to understand the origin of power-suppressed terms. They arise from effective actions among light particles that are induced by integrating out heavy particles.

2. Matsumoto and Yoshimura incorrectly attribute $\delta \rho_p = \frac{1}{6\gamma_{120}} \lambda^2 \frac{T^6}{M^2}$ to the heavy particle energy density, and then treat them as nonrelativistic real particles:

$$n_p = \frac{P_p + \delta P_p}{M} = (\frac{MT}{2\pi})^{3/2} e^{-M/T} + \frac{1}{6\gamma_{120}} \lambda^2 \frac{T^6}{M^2}.$$

As we have seen, $O(\lambda^2 \frac{T^6}{M^2})$ to energy density is just an Artifact, and can be easily eliminated by field redefinition.
3. \(\langle H_p \rangle \) cannot literally be interpreted as the energy density whose contribution only come from heavy particles.

\(H_p \) mixed with \(x^2, \dot{x}^2, (\dot{x}^2), \chi^\ast \)

when renormalization.

Therefore \(H_p \) also creates light particles via loop diagrams that involve virtual heavy particles.

So, in Matsumoto and Yoshimura's work, only \(\delta P = \delta P_p + \delta P_x + \delta P_\text{int} \) has physical meaning, not just single piece.