<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.P.</td>
<td>OSU</td>
</tr>
<tr>
<td>F. Antonuccio</td>
<td>OSU</td>
</tr>
<tr>
<td>O. Lunin</td>
<td>OSU</td>
</tr>
<tr>
<td>S. Tsujimaru</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>H.-C. Pauli</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>A. Hashimoto</td>
<td>UC SB</td>
</tr>
<tr>
<td>J. Hiller</td>
<td>Uof. Minn.</td>
</tr>
<tr>
<td>Uwe Trittmann</td>
<td>OSU</td>
</tr>
<tr>
<td>P. Haney</td>
<td>OSU</td>
</tr>
<tr>
<td>I. Filippou</td>
<td>OSU</td>
</tr>
</tbody>
</table>
$SDLCQ$

I. $P^- = \{Q^-, Q^-\}$

II. $DL CQ$ for Q^-

$$Q^- \sim \sum_i \overline{b}^+(k_1) b^+(k_2) b_i(k_1+k_2)$$

$$\left(\frac{1}{k_1} + \frac{1}{k_2} - \frac{1}{k_1+k_2} \right) + \cdots$$

$$\{k_i\} = \frac{n_i \pi}{L} \quad n_i = 1, 2, \ldots$$

III. $14 > a \sum_i \sum_{\{k_i\}} f(k_i) \text{Tr} \left(b_i^+ \cdots b_{ik_m}^+ \right) 10 >$

$$\sum \overline{n}_i = k$$

$$+ \cdots$$

Single trace \Rightarrow large N_c.
Properties of SDLCG

I. All the good light-cone properties.

II. For theories with enough super symmetry, no renormalization.

III. Rapid convergence in K_\parallel & K_\perp.
Starting Point:

Super symmetry with fundamental matter in $2+1$ Dimensions:

$$S = \int d^3x \text{ Tr} \left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{i}{2} \bar{\Lambda} \Gamma^\mu D_\mu \Lambda + \bar{D}_\mu \bar{\chi} + D^\mu \chi + i \bar{\Psi} \gamma_\mu \gamma_5 \Psi - g' \left[\bar{\Psi} \Lambda \bar{\chi} + \bar{\chi} \gamma_5 \Psi \right] \right)$$

Dimensionally reduce to $1+1$.

Fields:

- A^2 adjoint scalar
- $\Lambda = (\lambda, \tilde{\lambda})$ adjoint fermion
- $\Psi = (\eta, \tilde{\eta})$ fundamental fermion
- $\tilde{\xi}$ fundamental scalar.

$\lambda, \tilde{\lambda}$ Majorana

$\eta, \tilde{\eta}, \tilde{\xi}$ complex.
Non-perturbative Spectrum of 2-D, N = (1,1) SYM at Finite and Large Nc

This is a SUSY of adjoint scalar \(\Phi_{ij} \) and adjoint fermion \(\Psi_{ij} \). It is the theory one obtains by dimensional reduction of SYM\(2+1 \to 1+1\)

- Theory is finite
- Compact in \(x^- \): \(x^- = x^- + l \eta \)
- Symmetric B.C. for \(\Phi \) and \(\Psi \).
- Drop all zero modes.
- Finite \(N_c \Rightarrow \) Multiple traces in states:
 \[\text{tr}(\Phi \Phi \ldots) \text{tr}(\Psi \Psi \ldots) \] \[\ldots \]
 - Super symmetric at every resolution \(K \).
- K=3 massive bound state appears 4 fold degenerate - 2 Fermions, 2 Bosons
- To indentify a state we follow it as a function of K and N
- States converge very fast i.e flat as a function of K.

As we increase K lower mass states with more and more partons appear.

Number of massless state appears to be \(2^k \cdot \frac{K-1}{2(K-1)} \)

\(N=10 \)
- Trail heads of lowest mass states as a function of k
- There is an accumulation point M_c.

\[\frac{\pi^2}{g^2 N} \]

Lightest Bound State with Non-Zero Mass (N=10)

- M_c appears to be at or close to zero
SYM in 2+1 Dimension

\[L_T > x_T \to \infty \]

\[\{ Q^+, Q^\pm \} = 2 \sqrt{2} \, p^\pm, \quad \{ Q^-, Q^- \} = 2 \sqrt{2} \, p^- \]

\[m^2 = 2 p^+ p^- - p_L^2 \]

L-C quantization \(\Rightarrow \) we can always work in \(p_L = 0 \) sector

\(\Rightarrow \) (1,1) SUSY.

\[A^+(k^+, n_L) = -N_{\text{max}} \leq n_L \leq N_{\text{max}} \]

\(N_{\text{max}} = 0 \Rightarrow 2D \) theory \hspace{0.5cm} \(N_{\text{max}} = \infty \Rightarrow 3D \) theory.

\[\{ Q^+, A_{tr} \} = \{ Q^+, A \} \]

\[\{ Q^-_{tr}, Q^-_{tr} \} \neq 2 \sqrt{2} p^-_{tr} \]

but \(\quad \{ Q^-_{tr}, Q^-_{tr} \} \quad \stackrel{N_{\text{max}} \to \infty}{\longrightarrow} \quad \{ Q^-_{tr}, Q^-_{tr} \} \)
\[\frac{M^2 L^2}{\kappa^2 N_c} \]

Some field theory?

\[g = \frac{g' \sqrt{NL}}{4 \pi^{3/2}} \]

\[g' (\text{Mass } 1 + 1) \]

\[\text{massless } 1 + 1 \]

laor
We can set some of the fields to zero and $Q \neq 0$.
This defines a set of 7 models.

Note: $A^2 = \psi^2 = 0 \Rightarrow$ Kutasov model
Super-symmetry with only adjoint fermion
-this was studied in great detail-

Our 7 models have the following content:

\[
\begin{array}{c|ccc}
A & 4 & 5 & 43 \\
\hline
\lambda & 1 & 2 & 3 \\
A^2 & X & X & 4 \\
\lambda A^2 & 5 & 6 & 7 \\
\end{array}
\]
Figure 9: $A\lambda\psi$ model: (a) Mass spectrum at $h = 1$ in units of $(g')^2N/\pi$ as function of $1/k$. (b) Lowest nonzero mass at $K = 4$ as function of coupling h.