AN INVESTIGATION OF THE ASYMMETRIC O(ε) IMPROVED FERMILAB LATTICE ACTION FOR HEAVY QUARKS

Z. SKROczyNSKI

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
AN INVESTIGATION OF THE
ASYMMETRIC O(α) IMPROVED FNAL
LATTICE ACTION FOR HEAVY QUARKS

IMPLEMENTATION OF IDEAS DEVELOPED IN
A.X. EL-KHADRA, A.S. KRONFELD, P.B. MACKENZIE
"MASSIVE FERMIONS IN LATTICE GAUGE THEORY"
PHYS. REV. D 55 (1997) 3983

SYMANZIK IMPROVEMENT OF THE WILSON
ACTION WITH AN INTERPRETATION INFORMED
BY HQET EXPANSION -
LEADS TO FORMULATION WITHOUT FULL
LORENTZ SYMMETRY OF OPERATORS
AND WITH FULL MASS DEPENDENCE OF
COEFFICIENTS.
SMOOTH CONNECTION BETWEEN LIGHT QUARK
(S.W. ACTION) AND HEAVY QUARK (NRQCD)
LIMITS.
HQET ANALYSIS \Rightarrow TWO MASS TERMS IN ACTION

REST MASS

KINETIC MASS

SYMMETRIC (WILSON) ACTION $\Rightarrow O(qM^2)$ ERROR
\Rightarrow REST MASS \neq KINETIC MASS

FIX THIS WITH SPACE-TIME ASYMMETRY

HQET ANALYSIS \Rightarrow REST MASS IRRELEVANT

\therefore CAN USE SYMMETRIC ACTION IF WE USE KINETIC MASS TO FIX THE PHYSICS

TEST THIS.
LATTICE DISPERSION RELATION:

\[E^2(p^2) = M_1^2 + \frac{M_1}{M_2} p^2 + O(p^4) \]

Define rest mass \(M_1 = E(0) \).
Kinetic mass \(M_2 = \left(\frac{\partial^2 E}{\partial p^2} \right)_{p=0}^{-1} \).

\(M_1 \neq M_2 \) to \(O(\alpha M_0) \).

Correct for this by introducing a space-time asymmetry in the fermion action.

Adjust the asymmetry until \(M_1 = M_2 \).

Constitutes the first improvement condition.

\(M_2 \) is the physically relevant mass.
LATTICE ACTION

\[S_0 = \bar{\psi} \psi - K_t \bar{\psi} D_t \psi \]

\[- K_s \sum \bar{\psi} D_i \psi \]

ASYMMETRY PARAMETER \[J = \frac{K_s}{K_t} \]

BARE QUARK MASS \[M_0 = \frac{1}{2K_t} - 3J - 1 - M_{\text{crit}} \]

AT SOME \[J = J_{\text{NP}} (M_0) \quad M_1 = M_2 \]

O(a) IMPROVEMENT:

\[S_E = C_E \bar{\psi} iK_s \sigma_0 F_0 \]

\[S_B = C_B \bar{\psi} iK_s \sigma_{ij} F_{ij} \]

O(a) IMPROVED ASYMMETRIC ACTION

\[S = S_0 + S_E + S_B \]
LATTICE DETAILS:

$12^3 \times 24$

$\beta = 5.7$

QUENCHED

$c_\varepsilon = c_8 = 1.57$ (TADPOLE IMPROVED PERT. THEORY)

COMPARE WITH

PERT. THEORY

MERTENS, KRONFELD, EL-KHADRA

"SELF ENERGY OF MASSIVE LATTICE FERMIONS"

PHYS. REV. D58 (1998) 034505

$J=1$ M.C. DATA (J. SIMONE)

ADDITIONAL LATTICE RESULTS:

$16^3 \times 32$

$\beta = 5.9$

QUENCHED

$c_\varepsilon = c_8 = 1.50$
STRATEGY FOR FINDING λ_{np}

Compute M_1 and M_2 for $1S$ state of quarkonium and heavy-light mesons

(light quark at strange mass computed with $J = 1$)

Adjust J until $\frac{M_1}{M_2} = 1$

Do this at constant M_0
To get mass dependence

Or at constant M_2 (const. k_3)
To get physics

Quarkonium: 100 configs
300 configs at b and c

Heavy-lights: 300 configs
(larger statistical errors)
Calculation of m_1 and m_2:

Compute p_5 and v correlation functions at 5 momenta using Coulomb gauge 1S and 2S hydrogenic wavefunction sources and sinks.

Perform 2 state fit to matrix of correlators

\[
\begin{pmatrix}
1S-1S & 2S-1S \\
1S-2S & 2S-2S
\end{pmatrix}
\]

Obtain $E(p)$

Then $m_1 = E(0)$

Extract m_2 from a_1 in fit of dispersion relation to

\[
E^2(p^2) = a_0 + a_1 p^2 + a_2 p^4 + a_3 \sum p_i^4
\]
INTERPOLATION TO J_{np} IN QUARKONIUM
AT CONSTANT $\alpha M_0 = 0.72$
\[\zeta_{\text{NP}} \text{ HH } \beta = 5.9 \]

\[\zeta_{\text{NP}} \text{ HL } \beta = 5.9 \]
J^{NP} as a function of quark mass
from quarkonia and heavy-lights
QUARKONIUM DISCREPANCY

\[J_{np} \text{ from quarkonia does not match that from heavy-lights} \]
\[J_{np} \text{ from heavy-lights agrees reasonably with p.t.} \]

FOLLOWING SCRIP

COLLINS, EDWARDS, HELLER, SLOAN

NUCL. PHYS. (PROC. SUPPL.) B47 (1996) 485

DEFINE

\[I = \frac{2 \delta M_{nl} - (\delta M_{hh} + \delta M_{ll})}{2M_{2, nl}} \]

\[\delta M = M_2 - M_1 \]

PLOT \(I \) vs. \(M_{2, nl} \) with the heavy quarks computed at \(J_{np} \) from the heavy-lights, so \(\delta M_{nl} = 0 \) (and \(\delta M_{ll} = 0 \))
This effect explained in

A. S. Kronfeld

In terms of meson binding energies

\[B_1 = M_{1qq} - M_{1q} - M_{1q} \]

\[B_2 = M_{2qq} - M_{2q} - M_{2q} \]

For heavy-lights

Errors on \(B_1 \) and \(B_2 \) are \(O(\alpha_s, \alpha_s \Lambda_{QCD}) \)

with \(O(\alpha) \) improved action

For quarkonia

\(B_1 \) accurate to \(O(u^2) \)

\(B_2 \) accurate to \(O(1) \)

With action accurate to \(O(u^2) \)

Since \(M_2 \) multiplies an \(O(u^2) \) operator
$c\bar{c}$ Spectrum at Tuned J

$a^{-1} = 1.182^{+0.027}_{-0.028}$ GeV
$c\bar{c}$ Spectrum: Hyperfine + p-Wave Splitting

Charmonium $\bullet \; \xi$ tuned $\bullet \; \xi = 1$

$J/\psi - \eta_c$ 2S-1S $h_c - \chi_{c0}$ $h_c - \chi_{c0}$ $\chi_{c1} - \chi_{c0}$
$c\bar{c}$ SPECTRUM: SPLITTINGS FROM $1S$

$a_c' = 1.182^{+0.027}_{-0.028}$ GeV

$a_{c'} = 1.161^{+0.032}_{-0.032}$ GeV

Charmonium

- ξ tuned
- $\xi = 1$
QUARKONIUM 1P-1S SPLITTING \ versus \ M_2

\[aM(1P_1) - aM(1S) \]

- \(\xi_{NP} \)
- \(\xi = 1 \)
- \(\xi \neq 1 \)

\[aM_2(1S) \]
HEAVY-LIGHT HYPERFINE SPLITTING
AS A FUNCTION OF M_2

\[aM(\tilde{3}S_1) - aM(\tilde{1}S_0) \]

\[aM_2(\tilde{1}S) \]
VARIATION OF THE PSEUDOSCALAR DECAY CONSTANT WITH M_2
CONCLUSIONS

DEMONSTRATED VIABILITY OF NON-PERTURBATIVE EVALUATION OF J_{NP}

REPRODUCTION OF PHYSICAL RESULTS - AGREEMENT WITH $J=1$ RESULTS

EVIDENCE FOR USING M_2 AS THE PHYSICALLY RELEVANT MASS.

POSSIBLE $O(\Lambda_{QCD}^2 \frac{a}{m_2})$ AND $O(m_2 v^2)$ ERRORS IN HEAVY-LIGHT AND QUARKONIA FROM USE OF TREE-LEVEL C_6 AND C_8

.: NEED COMPUTATION AT ANOTHER LATTICE SPACING

QUARKONIUM DISCREPANCY \Rightarrow NEED TO FURTHER IMPROVE THE ACTION.