LIGHT QUARK MASSES
FROM LATTICE QCD
AND SUM RULES
(DPF 2000, Columbus, OHIO)

Rajan Gupta
Los Alamos National Laboratory

October 31, 2000
LIGHT QUARK MASSES

Light quark masses are poorly determined.
Review of Particle Properties by PDG (\(\overline{MS}; \mu = 2\) GeV)

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_u)</td>
<td>2 – 8 MeV</td>
<td>1 – 5 MeV</td>
</tr>
<tr>
<td>(m_d)</td>
<td>5 – 15 MeV</td>
<td>3 – 9 MeV</td>
</tr>
<tr>
<td>(m_s)</td>
<td>100 – 300 MeV</td>
<td>75 – 170 MeV</td>
</tr>
</tbody>
</table>

Direct determination of quark mass not possible:

- Quarks are not asymptotic states.
- \(m_{\text{constituent}} \sim \Lambda_{\text{QCD}}\).

Three approaches are used to extract these masses:

1. Chiral Perturbation Theory
2. Lattice QCD
3. Sum Rules
CHIRAL PERTURBATION THEORY

- Lowest order chiral lagrangian (same symmetries as QCD):

\[\mathcal{L} = \frac{1}{4} f^2 \text{Tr} \partial_\mu \Sigma \partial^\mu \Sigma^\dagger + \frac{1}{2} f^2 \mu \text{Tr}(M\Sigma + M\Sigma^\dagger) \]

with unknown decay constant \(f \) and overall scale \(\mu \). So only ratios of masses predictable:

- Lowest order results:
 \[\frac{m_s}{m} = 24.2-25.9 \]
 \[\frac{m_u}{m_d} = 0.55 \]
 \[\frac{m_s}{m_d} = 20.1 \]

- Naïve analysis does not change much at next order:
 \[\frac{m_s}{m} = 24.4(1.5) \]
 \[\frac{m_u}{m_d} = 0.553(43) \]
 \[\frac{m_s}{m_d} = 18.9(8) \]
• Corrections to lowest order

\[\frac{M_K^2}{M^2_{\pi}} = \frac{m_s + \bar{m}}{m_u + m_d} (1 + \Delta_M) \]
\[\Delta_M > 0 \]

• \(O(m)\) corrections absent in the combination:

\[Q \equiv \frac{M_K^2}{M^2_{\pi}} \frac{M_K^2 - M^2_{\pi}}{M_{K^0}^2 - M_{K^+}^2} = \frac{m_s^2 - \bar{m}^2}{m_d^2 - m_u^2} (1 + O(m^2)) \]
\[= 22.7(8) \ (\eta \text{ decay}) \]

• A second independent ratio \(R\) (determined in various ways)

\[R \equiv \frac{m_s - \bar{m}}{m_d - m_u} < 44 \]
Figure from Leutwyler (hep-ph/9609467). The dot is Weinberg’s value and the cross is estimate reported in Gasser and Leutwyler, Phys. Rep. 87 (1982) 77.
DETERMINATION OF Δ_M?

- Kaplan Manohar symmetry: Chiral Lagrangian invariant under

$$
M' \rightarrow \alpha M + \beta (M^\dagger)^{-1} \text{det} M \\
m'_u \rightarrow \alpha m_u + \beta m_d m_s
$$

if LEC are suitably modified.

- KM symmetry implies that only Q is determined without ambiguity at next to leading order.

- Hard to push chiral perturbation theory further. Leutwyler makes "reasonable" assumptions to extract two ratios from PS phenomenology.

- Need to include electromagnetic corrections to determine m_u and m_d separately.

- $m_u = 0$?
DEFINITION OF QUARK MASSES

Ward identities used to define quark masses:

1. Vector Ward Identity (VWI):

\[
\partial_\mu (V_\mu^{(12)})_R = (m_1 - m_2)_R(\mu)S_R^{(12)}(\mu) + O(a^{n+1})
\]

\[
\partial_\mu (ZV V_\mu^{(12)}) = Z_m(\mu a)(m_1 - m_2)(\frac{1}{a})Z_S(\mu a)S^{(12)}(\frac{1}{a})
\]

Introduces \(\kappa_c\) for Wilson like fermions that defines the chiral limit.

2. Axial vector Ward Identity:

\[
\partial_\mu (A_\mu^{(12)})_R = (m_1 + m_2)_R(\mu)P_R(\mu) + O(a^{n+1})
\]

\[
\partial_\mu (Z_A A_\mu^{(12)}) = Z_m(\mu a)(m_1 + m_2)(\frac{1}{a})Z_P(\mu a)P(\frac{1}{a})
\]

using which

\[
(m_1 + m_2)_R = \frac{Z_A}{Z_P(\mu)} \frac{\langle 0 | \partial_4 A_4(t)J(0) | 0 \rangle}{\langle 0 | P(t)J(0) | 0 \rangle}
\]

\[
t \to \infty \quad -m_\pi \frac{Z_A}{Z_P(\mu)} \frac{\langle 0 | A_4(t)J(0) | 0 \rangle}{\langle 0 | P(t)J(0) | 0 \rangle}
\]
RGI MASS

- Nature provides probes of axial (A_μ) and vector (V_μ) currents but not of pseudoscalar (P) and scalar (S) densities.

- Z_m, Z_P, Z_S, have anomalous dimensions and their calculation introduces a dependence on renormalization scheme and scale.

- Using the renormalization group running of $m_{\overline{MS}}(\mu)$, we can define a scheme and scale independent quantity

\[
\hat{m} = \lim_{\mu \to \infty} \{ m_{\overline{MS}}(\mu) [2\beta_0 g_{\overline{MS}}^2(\mu)]^{-\gamma_0/2\beta_0} \}
\]

\[
\beta_0 = (11 - 2n_f/3)/16\pi^2
\]

\[
\gamma_0 = -8/16\pi^2
\]
LATTICE QCD APPROACH

- First principal QCD calculations with 4 input parameters: $\alpha_s \leftrightarrow a, m_u, m_d, m_s$

- Define lattice quark masses using the AWI and VWI

- Calculate the masses M_H of mesons and baryons as a function of a, m_i. Fit M_H versus m_i using forms predicted by χPT and extrapolate (interpolate) to physical hadrons to get unrenormalized m_u, m_d, m_s.

- Calculate (non-perturbatively) Z_m, Z_A, Z_P

- Determine $m_R = Z \times m$

- These masses, M_H and m_R, have corrections of $O(a^{n+1})$ if the lattice action and operators are improved to $O(a^n)$. Extrapolate to $a = 0$

- Limitation: Neglect electromagnetic effects \Rightarrow work in isospin symmetric limit $m_u = m_d$ and
CHIRAL EXPANSION

Physical m_u and m_d require very large (1284) lattices and computer time. Currently, resort to a chiral expansion

\[aM_\Delta(a, m_i, m_j, m_k) = A_\Delta(a) + B_\Delta(a) (m_i + m_j + m_k)_R + C_\Delta(a) (m_i + m_j + m_k)_R^2 + \ldots \]

\[aM_\rho(a, m_i, m_j) = A_\rho(a) + B_\rho(a) (m_i + m_j)_R + C_\rho(a) (m_i + m_j)_R^2 + \ldots \]

1

- Physical quark masses $(m_q)_R$ are determined from $A_H(a), B_H(a), C_H(a), \ldots$ by extrapolating (interpolating) Eq. 1 to physical values of M_H.

- Different M_H should give the same m_u, m_d, m_s up to corrections of $O(a^{n+1})$

- Extrapolate either $A_H(a), B_H(a), C_H(a), \ldots$, OR $m_q(a)$ to $a = 0$ to remove discretization errors

- Self-consistent determination of quark masses is equivalent to validation of the hadron spectrum.
SYSTEMATIC ERRORS

- Finite Volume: $M_\pi L \geq 5$ for quenched theory
- Chiral fits and extrapolation to $(m_u + m_d)/2$
- M_K with $m_1 \approx m_2 \approx m_s/2$
- Continuum extrapolation to remove discretization errors
- Non-perturbative versus perturbative determination of Z_m, Z_P, Z_A

- Quenched approximation

 Hadrons do not take on physical masses

 Hadrons are stable – no width

 Quenched chiral logs; $\eta' \ (\implies m_i > m_s/2)$
RENORMALIZATION CONSTANT

Perturbative versus Non-perturbative

- The variation in the continuum limit is $\approx 2 - 5\%$.
CHIRAL EXTRAPOLATION

UKQCD-ALPHA (hep-lat/9906013; NPB571 (2000) 237)

Fig.a) \[R = f_K/\langle 0|P|\pi\rangle \text{ and } (m_s + \bar{m}) = R M_K^2 \]

Fig.b) \[(m_s + \bar{m}) \text{ in units of constant } \ast f_K \]
CONTINUUM EXTRAPOLATION

\[\frac{m_u + m_d}{2} \text{ in } \overline{MS} \text{ scheme at } \mu = 2 \text{ GeV} \]

- Figure from CP-PACS (hep-lat/0004010 revised).
- Expected errors \(O(g^2a) \). Fit used is \(O(a) \)
- QUENCHED: \(4.36^{+0.14}_{-0.17} \) MeV
- \(n_f = 2 \): \(3.44^{+0.14}_{-0.22} \) MeV
CONTINUUM EXTRAPOLATION

$m_s(M_K)$ in \overline{MS} scheme at $\mu = 2$ GeV

- Figure from CP-PACS (hep-lat/0004010 revised).
- Expected errors $O(g^2a)$. Fit used is $O(a)$
- QUENCHED: 110^{+3}_{-4} MeV
- $n_f = 2$: 88^{+4}_{-6} MeV
CONTINUUM EXTRAPOLATION

\[m_s(M_\phi) \text{ in } \overline{MS} \text{ scheme at } \mu = 2 \text{ GeV} \]

- Figure from CP-PACS (hep-lat/0004010 revised).
- Expected errors \(O(g^2a) \). Fit used is \(O(a) \)
- QUENCHED: \(132^{+4}_{-6} \) MeV
- \(n_f = 2 \): \(90^{+5}_{-11} \) MeV
RECENT QUENCHED RESULTS

m_q in \overline{MS} scheme at $\mu = 2$ GeV

<table>
<thead>
<tr>
<th>Action</th>
<th>\bar{m}</th>
<th>$m_s(M_K)$</th>
<th>$m_s(M_\phi)$</th>
<th>scale $1/a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary 1997 [1]</td>
<td>3.8(1)(3)</td>
<td>99(3)(8)</td>
<td>111(7)(20)</td>
<td>M_ρ</td>
</tr>
<tr>
<td>APE 1999 [3]</td>
<td>O(a) SW</td>
<td>4.8(5)</td>
<td>111(9)</td>
<td>M_K</td>
</tr>
<tr>
<td>JLQCD 1999 [5]</td>
<td>Staggered</td>
<td>4.23(29)</td>
<td>106(7)</td>
<td>M_ρ</td>
</tr>
<tr>
<td>ALPHA-UKQCD 1999 [6]</td>
<td>O(a) SW</td>
<td></td>
<td>97(4)</td>
<td>f_K</td>
</tr>
<tr>
<td>RIKEN-BNL 1999 [7]</td>
<td>DWF</td>
<td></td>
<td>95(26)</td>
<td>f_π</td>
</tr>
<tr>
<td>QCDSF 1999 [8]</td>
<td>O(a) SW</td>
<td>4.4(2)</td>
<td>105(4)</td>
<td>$r_0 \approx M_\rho$</td>
</tr>
<tr>
<td>QCDSF 1999 [8]</td>
<td>Wilson</td>
<td>3.8(6)</td>
<td>87(15)</td>
<td>$r_0 \approx M_\rho$</td>
</tr>
<tr>
<td>CP-PACS 2000 [9]</td>
<td>Iwasaki+SW</td>
<td>4.4(2)</td>
<td>110(4)</td>
<td>M_ρ</td>
</tr>
<tr>
<td>CP-PACS 2000 [9]</td>
<td>$n_f = 2$</td>
<td>3.44$^{+1.14}_{-0.22}$</td>
<td>88$^{+4}_{-6}$</td>
<td>90$^{+5.1}_{-11}$</td>
</tr>
</tbody>
</table>

Table 1: SW stands for the Sheikhholeslami-Wohlert action.

- $\sim 10\%$ variation depending on quantity used to fix $1/a$
- $\sim 20\%$ difference $m_s(M_{K_1})$ versus $m_s(M_\phi) \approx m_s(M_{K*})$
- r_0 defined by $r^2 \partial V(r)/\partial r |_{r = r_0} = 1.65$
SUMMARY OF LATTICE RESULTS

m_q in \overline{MS} scheme at $\mu = 2$ GeV

SYSTEMATIC ERRORS:

- Chiral extrapolation from $\sim m_s$
- Continuum extrapolation: \sim few % error
- Perturbative renormalization constants: \sim few % error

QUENCHED:

- $(m_u + m_d)/2$: 4.2 – 4.8 MeV
- m_s: 90 – 143 MeV

$n_f = 2$:

- $(m_u + m_d)/2$: $3.44_{-0.22}^{+0.14}$ MeV
- m_s: 89_{-10}^{+6} MeV
QCD SUM RULES

Consider the 2-point correlator for an operator J:

$$\Psi(q^2) = i \int d^4 x e^{i q \cdot x} \langle 0 \mid J(x) J(0) \mid 0 \rangle$$

This function is analytic on the complex q^2 plane with a cut along the positive real axis. It is perturbatively calculable for large $|q^2|$ (say $q^2 > s_0$), and away from the cut.

There are two ways to calculate the discontinuity of this correlator across the cut, i.e., $\rho = \text{Im}\Psi/\pi$

- Perturbation theory via OPE (this introduces quark masses in a given renormalization scheme, and a scale).

- By saturating the intermediate state by hadronic states (i.e. evaluating the Hadronic spectral function).

Matching between these two ways cannot be done point by point: an averaging over q^2 is required. This can be avoided by (i) calculating the low order moments of ρ, integration up to s_0 (Finite Energy Sum Rules), or (ii) Borel transform (Borel/Laplace transform sum rule).
“Finite energy sum rule” for \bar{m}

Ward Identity for the axial current (isospin projection λ^\pm)

$$J = \partial^\mu A^\pm_\mu = 2\bar{m} \bar{q} i\gamma_5 \lambda^\pm q$$

$$\Psi_5(q^2) \equiv i \int d^4 x e^{i q \cdot x} \langle 0 | T \{ \partial^\mu A^-_\mu(x), \partial^\nu A^+_\nu(0) \} | 0 \rangle,$$

$$= (m_d + m_u)^2 i \int d^4 x e^{i q \cdot x} \langle 0 | T \{ P^-(x), P^+(0) \} | 0 \rangle$$

- Perturbative QCD: calculated up to α_s^3
- Quark and gluon condensates in OPE are small?
- Hadronic spectral function includes $\pi, \pi(1300), \pi(1770)$ resonances, and the 3π continuum.
- Duality matching of $\int_{s_0}^{s_0} t^n \rho(t) dt$ done at $s_0 \sim 3 \text{ GeV}^2$.
“Borel Transform sum rule” for m_s

(Jamin&Munz, Chetyrkin,Pirjol,& Schilcher, Colangelo...)

Ward Identity for the $\Delta S = 1$ Vector current

$$J = \partial^\mu V_\mu = i(m_s - m_u)su$$

$$\Psi_5(q^2) \equiv i \int d^4xe^{iq\cdot x} \langle 0|T\{\partial^\mu V_\mu^\dagger(x), \partial^\nu V_\nu(0)\}|0\rangle,$$

$$= (m_s - m_u)^2 i \int d^4xe^{iq\cdot x} \langle 0|T\{S^\dagger(x), S(0)\}|0\rangle$$

- Perturbative QCD: calculated up to α_s^3
- Quark and gluon condensates in OPE are small?
- Hadronic spectral function includes $K^*_0(1430), K^*_0(1950)$ resonances, and the $K\pi$ continuum.
- Duality matching of $\int_0^\infty e^{-t/u} \rho(t)dt$ at $s_0 \sim 5.5$ GeV2.

MASTER EQUATION ($u^3\hat{\Psi}''(u)$ is the twice subtracted correlator of scalar currents calculated perturbatively)

$$u^3\hat{\Psi}''(u) = \int_0^{s_0} e^{-s/u} \rho_{hadronic} ds + \int_{s_0}^\infty \rho_{PQCD} ds$$
UNCERTAINTIES IN THESE SUM RULES

- Convergence of Perturbative QCD expressions.
- OPE: Contribution of condensates
- Choice of (Stability with respect to) the matching scale s_0. A large $s_0 \Rightarrow$ improved PQCD. On the other hand it has to be within the range of experimental information on hadronic spectral function.
- Ansatz for the hadronic spectral function.
- Overall normalization of the hadronic spectral function.
SUMMARY: SUM RULES

SR results discussed by N. Paver and K. Maltman

- \(m_u + m_d \) from pseudoscalar FESR (PT to \(O(\alpha_s^3) \))
 - Bijnens, Prades, Rafael: \(m_u + m_d = 8.7 \pm 1.8 \text{ MeV} \)

- \(m_s \) from Scalar SR (PT to \(O(\alpha_s^3) \))
 - Jamin 98: \(m_s = 116 \pm 22 \text{ MeV} \)
 - CFNP 98: \(m_s = 104 \pm 12 \text{ MeV} \)
 - Maltman 99: \(m_s = 115 \pm 8 \text{ MeV} \)

- \(m_s \) from \(\tau \) decay SR (PT: \(O(\alpha_s^2) \) + guess for \(O(\alpha_s^3) \))
 - Pich & Prades 99: \(m_s = 114 \pm 23 \text{ MeV} \)
 - Kambor & Maltman 00: \(m_s = 115 \pm 20 \text{ MeV} \)

Limitations for Scalar and PS sumrules:

- slowly converging PT even at \(Q = 2 \text{ GeV} \)
- Insufficient information on hadronic spectral function.

Future:
\(\tau \) decay SR: More data for \(\rho \) in the range \(Q = 1 - 1.4 \text{ GeV} \)
SUMMARY (\(\overline{MS}; \mu = 2 \text{ GeV}\))

Review of Particle Properties by PDG

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_u)</td>
<td>2 – 8 MeV</td>
<td>1 – 5 MeV</td>
</tr>
<tr>
<td>(m_d)</td>
<td>5 – 15 MeV</td>
<td>3 – 9 MeV</td>
</tr>
<tr>
<td>(m_s)</td>
<td>100 – 300 MeV</td>
<td>75 – 170 MeV</td>
</tr>
</tbody>
</table>

Proposed estimates (DPF2000)

<table>
<thead>
<tr>
<th></th>
<th>Sum Rules</th>
<th>(\text{LQCD}(n_f = 2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{m_u+m_d}{2})</td>
<td>3.4 – 5.2 MeV</td>
<td>3.1 – 3.7 MeV</td>
</tr>
<tr>
<td>(m_s)</td>
<td>90 – 140 MeV</td>
<td>78 – 100 MeV</td>
</tr>
</tbody>
</table>