Sufficient Extra Dimensions

Wayne R. Lundberg
US Air Force
&
University of Dayton
lundbewr@notes.udayton.edu

Figures are provided herein pursuant to the ‘fair use’ provision of US & International copyright law. All rights reserved; to obtain authorization for any other intended use, contact the author.

This work is dedicated to the memory of Miss Barbara Lynn Oldack
Outline

• Beyond Dirac
 – SU(3) as a 3D matrix algebra
 – SM 1-brane states and the oscillating neutrino
 physics/9712042
• Extra Dimensions
 – R-S scaling and the cosmological ‘constant’
 astr-ph/0007100
• AdS/CFT correspondence
 – Higgs boson and a black hole ‘singularity’
M (for Matrix) Theory

Has established the ‘superset of all possible theories’ by
- proving there is a connection between pre-existing theories
- must include the standard model (ref E. Witten “Reflections on the Fate of Spacetime” Phys Today Apr 96, “Duality, Spacetime and Quantum Mechanics” May 97, etc)

Includes D#-brane objects
- some supersufficient to SM (>11 dimensions total)
- how to break symmetries to achieve SM is poorly understood
- compactification onto Calabi-Yau manifolds (ref Green, Morrison & Strominger “Black Hole Condensation and the Unification of String Vacua” hep-th/9504145)

Changes from ‘closed oriented heterotic string’
- orientation vector - better options which may allow separation of quanta
- has a surface area (ref DJ Gross “Nonperturbative Two-Dimensional Quantum Gravity” PRL 8 Jan 90)
Beyond Dirac

- M-theory must extend the Schrödinger / Heisenberg / Dirac pictures to an explicit 11-dimensional picture

- Consider generalized Pauli matrices, σ_i, and anti-commuting matrices ρ_i, neglecting time (to understand the combinatorial algebra of 3+6 dimensional D1-brane states)

- Let $\alpha_1 = \rho_1 \sigma_1$ represents the 3X3 matrix operation:

$$\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

- Define $R \equiv \alpha_1^T \equiv (\rho_1 \sigma_1)^T$, a 90° rotation operator
3X3X3 matrix notation

To get $SU(3)_c \times SU(2)_L \times U(1)_y \rightarrow$ use restrictions

\[\begin{pmatrix} abc \\ def \\ ghi \end{pmatrix} \begin{pmatrix} jk l \\ mno \\ pqr \end{pmatrix} \begin{pmatrix} st u \\ vwx \\ yzA \end{pmatrix} \rightarrow \begin{pmatrix} gda \\ heb \\ ifc \end{pmatrix} \begin{pmatrix} jk l \\ mno \\ pqr \end{pmatrix} \begin{pmatrix} st u \\ vwx \\ yzA \end{pmatrix} \]

Using this 3X3X3 matrix notation is both very cumbersome AND - it doesn’t preserve rotations of each element - “a” thru “A” (these rotations will be used in lieu of complex numbers to represent anti-particles)

But a better notation does exist, which captures the full beauty of $SU(3)_c \times SU(2)_L \times U(1)_y$.

The matrix operator R is applied above-

and only corner-position-preserving operators are allowed.

i.e. operators similar to $\langle I | (RG \cdot R \cdot G) | I \rangle$ (Def: R, G, B faces \rightarrow)
The 8-fold Way - colorized

The Standard Model showing color- and charge-symmetries SM QCD coloring *assigned* (i.e. broken symmetry).
Rishon combinatorial notation included, with position symmetry kept.
Modeling Quarks, Particles & Strong Interactions

The path integral approach in the generalized notation of string theory:
(ref Quantum Fields and Strings Vol 1, E. Witten et al, p505)

\[
\int_{X:T^2 \rightarrow M} DXD\Psi_+ D\Psi_- e^{-\mathcal{L}}
\]

An equivalent formula in Dirac abstract vector notation,
Compactification to a Calabi-Yau threefold

\[
[(G^\prime CGC^\prime)(C^\prime YCY^\prime)(Y^\prime GYG^\prime)]^2 \{ G_{g-b} = B^\prime GM^\prime Y(CB^\prime C^\prime B)^2 Y^\prime MG^\prime B \}
\]

\[
|H> < \alpha | \Omega | \beta >
\]

gives \(ru, gu, bd\) proton
Compactification must involve Orthogonalization

SM Quanta must be both separable and innately described by the string (1-brane)

- **Spin** (Ref Tomonaga “The Story of Spin”, review in Phys Today Feb 98 & Pauli’s Spin Statistics Theorem)
- **Color charge** (usual QCD conventions)
- **Electric charge**
- **particle or anti-particle** (CP, CPT violation?)

..mass must be unified in the theory in a way which explains the existence of several mass-coupling constants (and eventually calculate their respective values a priori)
A string (1-brane) with standing “gravitational waves”

Standing waves have non-perturbative maxima which are equated to color quantum, based on spin orientation - can change; strong & weak interaction
- compactification onto C-Y 3-folds

Electric charge is identified by the curvature \((\pm \varnothing)\) (convex, concave relative to the particle’s spin/motion)

Spin quantum is defined only for the composite particle

Chirality wrt to orientation vector defines particle vs. antiparticle
Spin -1/2 Spin 1/2

cd = ru

quark

Spin is determined by the orientation of intrinsic spin to chiral “orientation” vector

3x3x3 matrix algebra has 1-1 correspondence to ‘orientifolds’:

\[T \]

charge 1/3

charge 2/3

ru quark

T carries charge 1/3

Spin 1/2
Recall that these are all *now* massive particles.

The orientation (color chirality) vector indicates that dA has physical meaning... i.e. mass

$$m = G_{\mu\nu} e^{-\lambda} |(G^{-CGC^{-}})(C^{-YCY^{-}})(Y^{-GYG^{-}})|^2 >$$

R-S scale factor $\lambda = \gamma \alpha(r_R, r_G, r_B, \phi_R, \phi_G, \phi_B)$

$$\sim k \frac{R_5}{R_3}$$

Beth, mass per 1-brane unit area, α', should have a formulation derived from a 2-D Quantum Gravity approach

(ref DJ Gross, PRL Vol 64 #2, p127 Jan 90.)
Weak Interactions

\[\int \Psi^*_\alpha(r) \Psi^*_\beta(r) d^3r = \sum_\Gamma \langle \alpha | r \rangle \langle r | \beta \rangle \]

(Ref Shiff, Eqn 23.26’)

Where the intermediate vector bosons \(W^\pm, Z^0 \) are

[CR\(^-\)MG\(^-\)R\(^2\)](YR\(^-\)Y\(^-\)R\(^2\))(RM\(^-\)R\(^-\)M\(^2\))[R\(^2\)GM\(^-\)RC\(^-\)]

\[\equiv \langle \alpha | r \times r | \beta \rangle \]

One of many… the \(\Sigma \) is the usual Feynman

SM formulae are recovered intact!

Here the vertex operator and propagator are specific, representing an explicit interaction, here on \(ru + \bar{rd} \)

may help resolve Pauli spin statistics problem …?

NOTE: the underlying algebra unifies Strong & Weak!
Closed vs Open strings

- most of mass comes from the gluon
- in both cases proportional to length
- but how to recover QCD combinatorics?
Oscillating, massive neutrinos

The trefoil knot is fundamental to string theory

$\nu_s \leftrightarrow \nu_\tau$

can’t break the string

Chargeless & colorless (VVV)-area is inherently extremely small

Neutrino - can interact-large mixing angle!

$\langle B^2 | (M^* Y M Y^*)^2 (Y^* C Y C^*)^2 | B^2 \rangle$

electron, neutrino+gluon

The Tripartite String Photon

no area \therefore no mass
Complex Gravity

\[e^{i\theta_{\mu\nu} - \lambda} \left| D_{3x3x3} \right\rangle \]

\[\sum_U (G_{\mu\nu} + iB_{\mu\nu}) \text{e}^{-\lambda \left[\left(G^\dagger CGC \right) \left(C^\dagger YCY \right) \left(Y^\dagger GYG \right) \right]^2} = 1 \]

\[\lambda = \gamma \alpha(r_R, r_G, r_B, \Phi_R, \Phi_G, \Phi_B) \]

At a fixed time, summing over all particles in space, this reduces to a formula which is equivalent to

\[\Omega_m + \Omega_\Lambda \]

So the model now has 9-D space plus 2-D “imaginary time”
(necessary to write boundary conditions for cosmology)

This result inspired by Strings 2000 conference presentation
A flat universe: \(\Omega_m + \Omega_\Lambda = 1 \)

Consider a cyclic cosmology model

\(\Omega_m \) is area-like for consistency with string theory, and such that mass is orthogonal to other intrinsic string properties.

\(\Omega_m = \sum_U f(\alpha) \),

mass is a function of 1-brane cross-section.

\(\Omega_\Lambda \) is not a constant, but slowly varying.
\[T_n = \frac{\ln(T/T_o)}{42} \]

\[T_{\text{end}} \approx 200 \text{ trillion years} \]

\[T_o = 10^{-9}s \]

C) Current ‘epoch of mini-inflation’ explained by ‘residual white holes’

A) Guth’s inflationary cosmology

B) Hawking’s Black Holes

Planck scale

Both axes use R-S scaling

\[(M_{\text{univ}} - M_{\text{bh}})/M_{p,\text{max}} \]

\[(M_{\text{univ}} - M_{\text{wh}})/M_{p,\text{max}} \]
The Inflationary Big Bang model

- General Relativity applies at all times
- symmetries broken spontaneously at 10^{27} °K
- requires a critical mass to reach closure

Recent results:

- mirror symmetry modifies Relativity at event horizon
 \rightarrow cosmological constant; $F_g = G/(r^2 - \alpha')$..Maldacena
 (Greene, Morrison, Strominger)
- “drastic change in the structure of matter at 1.5×10^{12} °K”
 (Wilczek cites Karsch)
- “The Universe Will Expand Forever” - no missing mass
 (Permutter & Garnovich)
Cyclic Cosmological model

- No critical mass is required for closure
- time when ‘final’ chiral symmetry is broken, corresponding to $T=1.5\times10^{12}\,\text{oK}$, is $t_0=10^{-6}\text{s}$
- confinement broken earlier (10^{-15}s)
- smooth transition from inflation to standard expansion ..mini-inflation

“A repulsive force in the universe seems to be at work on a cosmic scale.” per astronomical observations by LBL (see Jan AAS)

- would agree with cyclic model, $t_0 = 10^{-9}\text{s}$

- Mirror symmetry (GM&S) means that “superstrings, black holes, and elementary particles.. might be the same”
Higgs Boson

Planck or $\sqrt{\alpha'}$

Requires that the string or 1-brane have 3 ‘partitions’, in agreement with M. Kaku at interaction vertices - but exists only for $\sim 10^{-42}$s !!

Compactification to a Calabi-Yau threefold-
Kachru, Lawrence, Silverstein
but without true singularities in the theory

Supersymmetry (between bosons and fermions) is intact
The kernel of a Black Hole as related to a Higgs boson ->
Black Hole ‘singularity’ in the Tripartite String model

$S_{BH} = \frac{1}{4} \text{Area}$

Planck $= \sqrt{\alpha'}$, or 10^{-19}m?

Bekenstein-Hawking area-entropy law appears to be in agreement with Hayward, Mukohyama & Ashworth ‘entanglement entropy’ when strings (1-branes) are densely entangled on the surface of the black hole

NOTE-> BILATERAL ASYMMETRY
No known astrophysical objects are bilaterally asymmetric
At ‘singularity’ particles “freeze in time” - appear to be ejected