Positron annihilation studies of silicon-rich SiO$_2$ produced by high dose ion implantation

G. Ghislotti
Department of Applied Physics, Brookhaven National Laboratory, Upton, New York 11973

P. Asoka-Kumar and K. G. Lynn
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

L. F. Di Mauro
Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973

F. Corni and R. Tonini
Dipartimento di Fisica, Università degli Studi di Modena, Modena, Italy

(Received 26 June 1996; accepted for publication 15 November 1996)

Positron annihilation spectroscopy (PAS) is used to study Si-rich SiO$_2$ samples prepared by implantation of Si (160 keV) ions at doses in the range 3×10^{16}--3×10^{17} cm$^{-2}$ and subsequent thermal annealing at high temperature (up to 1100 °C). Samples implanted at doses higher than 5×10^{16} cm$^{-2}$ and annealed above 1000 °C showed a PAS spectrum with an annihilation peak broader than the unimplanted sample. We discuss how these results are related to the process of silicon precipitation inside SiO$_2$.© 1997 American Institute of Physics.

[S0003-6951(97)00804-8]

The study of silicon-rich SiO$_2$ (Si$_2$O$_3$) has been the matter of several papers. Different models have been proposed to describe this structure: a random-bonding model in which Si-Si and Si-O bonding are randomly distributed; a random-mixture model for which tetrahedral units are grouped together; finally, a shell model in which silicon clusters are embedded in stoichiometric SiO$_2$. Each of these models gives a correct picture for a different degree of silicon excess. Apart from these fundamental questions, Si precipitation in Si-rich SiO$_2$ has been used to produce Si nanocrystals inside a dielectric matrix which can give visible luminescence at room temperature.

In this study we examined annealing behavior of Si-rich SiO$_2$ using positron annihilation spectroscopy (PAS). This technique is based on the fact that positrons, when implanted at a given energy, thermalize and diffuse inside the medium, and finally annihilate with electrons. Gamma-rays emitted after the annihilation carry information about the annihilation site. In a Doppler broadening measurement this information is extracted by analyzing the broadening of the 511 keV annihilation peak, due to the non-zero momentum of electrons. The availability of variable energy positron beams allow non-destructive depth-profiling of materials.

The technique has been extensively used to study the Si-SiO$_2$ system (for a review see Ref. 9).

Samples were prepared by implanting 160 keV 28Si$^+$ ions into 430 nm thick SiO$_2$ layers thermally grown on a (100) oriented p-type Si substrate kept at room temperature during implantation. Fluences ranged from 3×10^{16} cm$^{-2}$ to 3×10^{17} cm$^{-2}$, the ion current density was 0.3 \(\text{A/cm}^2 \). For a set of samples, obtained by implanting in fused quartz Suprasil substrate was considered. Suprasil samples were implanted at doses from 5×10^{16} cm$^{-2}$ to 1.5×10^{17} cm$^{-2}$.

Positron annihilation spectroscopy measurements were performed in an ultrahigh vacuum chamber ($<10^{-7}$ Torr) using a variable energy positron beam. In each measurement 10^6 counts were accumulated. The Doppler broadening of the 511 keV annihilation line was measured with an HPGe-detector based gamma spectroscopy system. The broadening was characterized using the line shape parameter (S-parameter), defined as the area of a fixed region (≈ 1.59 keV wide) in the center of the annihilation peak divided by the total area of the peak. The sharpness of the annihilation peak is related to the S-parameter, namely sharper peak produces a higher S-value. In order to compare different S-E spectra, it is customary to divide measured S-parameter by that of a reference sample measured under the same experimental conditions. A p-type high resistivity Si sample was taken as a reference.

Suprasil samples were annealed in a vacuum furnace ($\approx 10^{-6}$ Torr). Thermal SiO$_2$ layers on Si samples were annealed in situ up to 700 °C with a resistively heated tantalum foil, at 10^{-7} Torr. Above 700 °C, annealing was performed in N$_2$ atmosphere. Annealing time was 30 min.

Figure 1 shows the S-parameter values as a function of the positron implantation energy E (S vs E) for Suprasil samples implanted at different fluences. The upper abscissa represents the mean positron implantation depth z calculated according to the relation: $z = AE^p/n$, where, in case of SiO$_2$, $\rho = 2.33$ g/cm3, $n = 1.6$, and $A = 4.0$ μg cm$^{-2}$ keV$^{-1}$.9 The S-parameter versus implantation energy curve for unimplanted sample is also reported. The low S-value observed at the surface for this sample is related to positrons implanted at zero energy, diffusing back to the surface and annihilating there. When the implantation energy increases,

aPresent address: CORECOM, via Ampere 30, 20131 Milano, Italy.
of annealing temperature are reported for samples implanted at 5×10^{16} cm$^{-2}$ and 1×10^{17} cm$^{-2}$, respectively. In the temperature interval from 100 °C to 300 °C the S-parameter increases to values close to 1 (the reference silicon S value) and it remains constant up to 800 °C. A decrease is observed only after annealing at 900 °C. Further annealing at 1100 °C shows a larger reduction: while for sample implanted at 5×10^{16} cm$^{-2}$ the unimplanted S value is restored, for sample implanted at 1×10^{17} cm$^{-2}$ fluence the S-parameter goes below this limit.

This behavior could be related to defects produced during implantation with Si atoms. Different kind of defects can be produced in SiO$_2$ by implantation: E$'$, non-bridging-oxygen hole centers (NBOHC), and peroxy radicals. In a PAS Doppler broadening spectrum NBOHC give rise to a low S-value and they are not stable above 300 °C. Peroxy radicals are typical of oxygen-rich samples. In a Si-rich region E$'$ defects are more probably produced. However, they are positively charged and therefore they cannot trap positrons efficiently. A high S-value can be related to positronium (Ps) formation inside voids. In this case ion implantation should decrease Ps formation by producing smaller defects and reducing free spaces. Therefore S value in as-implanted samples should decrease as a function of the dose.

Assuming that the high S-parameter and its observed annealing behavior are related to defects, we would expect that S decreases to the unimplanted value after annealing at 1100 °C (the level reported in Fig. 2 refers to unimplanted sample annealed at 1100 °C). This is observed in the sample implanted at 5×10^{16} cm$^{-2}$ but not at 1×10^{17} cm$^{-2}$, where S decreases below the unimplanted value. The previous arguments exclude that the decrease in S after annealing at 1100 °C is related to defect recovery. The region of interest corresponds to a Si-rich zone. We propose that the high S-parameter is related to the presence of Si-atoms in a concentration higher than that of stoichiometric SiO$_2$. The first annealing stage observed around 300 °C could be due to recovery of defects, like E$'$, typical of a Si-rich SiO$_2$. It is known that these defects anneal out in this temperature range.

When heated at high temperature, ordering processes can take place in amorphous SiO$_2$, as already observed using PAS. However such a phenomena are effective above 1200 °C or, around 900–1000 °C, for very long annealing time (48 h in Ref. 21). The experimental conditions to observe ordering in SiO$_2$ are therefore different from those adopted in the present case. Moreover S-value for unimplanted sample reported in Fig. 2 refers to a sample annealed under the same conditions than implanted ones. S-value in this case is higher than for non-annealed sample, whereas S-parameter is expected to decrease when ordering processes or crystalline phases are present. Our results agree with data presented by Shimura et al., who observed crystalline phases in as-grown thermal SiO$_2$ layers, but no changes after annealing for 1 h at 950 °C. Therefore another kind of structural changes are responsible for S-value decrease in implanted samples after annealing at high temperature.

Above 1000 °C SiO$_2$ dissociates according to the reaction: $24,25$ SiO$_2$ → Si + SiO$_2$, therefore the Si excess pre-
reduction has a monotonic dependence on dose and Fig. 3 -value is lower than the unimplanted oxide, and SiO$_2$ system is observed for positrons trapped at the interface of Si nc inside SiO$_2$ is also the observation of a photoluminescence centered at around 780 nm. PL spectrum for unimplanted samples. Samples implanted at a dose higher than 5×10^{16} cm$^{-2}$ present S-parameter lower than unimplanted value. This difference is related to silicon precipitation in SiO$_2$.

In conclusion silicon-implanted fused quartz and thermal SiO$_2$ layers have been studied using positron annihilation spectroscopy. After annealing at 1100 °C, samples implanted at 5×10^{16} cm$^{-2}$ showed no difference in S-parameter respect to unimplanted samples. Samples implanted at a dose higher than 5×10^{16} cm$^{-2}$ present S-parameter lower than unimplanted value.

FIG. 3. Normalized S vs energy curves for SiO$_2$ layers on Si implanted at different doses (3×10^{16} cm$^{-2}$-3×10^{17} cm$^{-2}$) and subsequently annealed at 1000 °C.