(1)

$$
\begin{array}{lll}
\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3} & =0 \\
\xi_{1}-\mathrm{i}_{1} \mathrm{R}_{1}+\mathrm{i}_{2} \mathrm{R}_{2} & =0 \\
\xi_{2} & & +\mathrm{i}_{2} \mathrm{R}_{2}-\mathrm{i}_{3} \mathrm{R}_{3} \tag{3}
\end{array}
$$

$\xi_{1}=1 \mathrm{~V}$	$\mathrm{R}_{1}=1 \Omega$
$\xi_{2}=2 \mathrm{~V}$	$\mathrm{R}_{2}=2 \Omega$
	$\mathrm{R}_{3}=3 \Omega$

(4)

$$
\begin{array}{rll}
\left(\xi_{2}-\xi_{1}\right)+\mathrm{i}_{1} \mathrm{R}_{1} & -\mathrm{i}_{3} \mathrm{R}_{3} & =0 \\
\mathrm{i}_{1} \mathrm{R}_{2}+\mathrm{i}_{2} \mathrm{R}_{2}+\mathrm{i}_{3} \mathrm{R}_{2} & =0 \\
\xi_{2}-\mathrm{i}_{1} \mathrm{R}_{2} & -\mathrm{i}_{3}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) & =0 \tag{6}
\end{array}
$$

(7) $\left(\xi_{2}-\xi_{1}\right) R_{2}+i_{1} R_{1} R_{2}$

- $\mathrm{i}_{3} \mathrm{R}_{2} \mathrm{R}_{3}=0$
(8) $\xi_{2} \mathrm{R}_{1}-\mathrm{i}_{1} \mathrm{R}_{1} \mathrm{R}_{2}$
- $\mathrm{i}_{3} \mathrm{R}_{1}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)=0$
(9) $\mathrm{R}_{1} \xi_{2}+\mathrm{R}_{2}\left(\xi_{2}-\xi_{1}\right)-\mathrm{i}_{3}\left(\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{1} \mathrm{R}_{3}\right)=0$
(10) $i_{3}=\frac{R_{1} \xi_{2}+R_{2} \xi_{2}-R_{2} \xi_{1}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}=\frac{2+4-2}{2+6+3} \mathrm{~A}=\frac{4}{11} \mathrm{~A}$
(11) $i_{1}=\frac{i_{3} R_{2} R_{3}-R_{2}\left(\xi_{2}-\xi_{1}\right)}{R_{1} R_{2}}=\frac{4 / 11 * 6-2}{2} \mathrm{~A}=\frac{1}{11} \mathrm{~A}$
(12) $i_{2}=-i_{1}-i_{3}=-\frac{1}{11}-\frac{4}{11}=-\frac{5}{11} \mathrm{~A}$

$(3)-(2)$
$\mathrm{R}_{2} *(1)$
$(3)-(5)$
$\mathrm{R}_{2} *(4)$
$\mathrm{R}_{1} *(6)$
$(7)+(8)$
solve (9) for i_{3}
solve (7) for i_{1}, then use (10)
solve (1) for i_{2}, use (10) and (11)

Notes:

- i_{1} and i_{3} are both positive so the directions given for currents i_{1} and i_{3} are correct.
- i_{2} is negative so its current direction is the opposite of that given.
- Both batteries are supplying power because their currents are flowing out of the positive terminals.

