Solving Three Equations In Three Unknowns

(1)			i_1	+	i_2	+	i ₃	= 0	$\xi_1 = 1V$	$R_1 = 1\Omega$	
(2)	ξ_1	-	i_1R_1	+	i_2R_2			= 0	$\xi_2 = 2V$	$R_2 = 2\Omega$	
(3)	ξ2			+	i_2R_2	-	i_3R_3	= 0		$R_3 = 3\Omega$	
(4)	$(\xi_2 - \xi_1)$	+	i_1R_1			-	i ₃ R ₃	= 0	(3) - (2)		
(5)			i_1R_2	+	i_2R_2	+	i_3R_2	= 0	$R_2 * (1)$		
(6)	ξ2	-	i_1R_2			-	$i_3(R_2 + R_3)$	= 0	(3) - (5)		
(7) ((8)	$(\xi_2 - \xi_1)R_2 = \xi_2R_1$	+ -	$i_1R_1R_2$ $i_1R_1R_2$	2 2		-	$i_{3}R_{2}R_{3}$ $i_{3}R_{1}(R_{2}+R_{3})$	= 0 = 0	$R_2 * (4)$ $R_1 * (6)$		
(9)	$R_1\xi_2$ +	R	2 (ξ2-ξ 1)) -	• i ₃ (I	R ₁ F	$R_2 + R_2 R_3 +$	$\mathbf{R}_1\mathbf{R}_3)=0$	(7) + (8)		
(10) $i_3 = \frac{R_1\xi_2 + R_2\xi_2 - R_2\xi_1}{R_1R_2 + R_2R_3 + R_1R_3} = \frac{2+4-2}{2+6+3}A = \frac{4}{11}A$									solve (9) for i ₃		
(11)	$i_1 = \frac{i_3 R_2}{2}$	<i>R</i> ₃	$\frac{-R_2(\xi}{R_1R_2}$:	$(\xi_1) =$	= 4	$\frac{11*6-2}{2}A =$	$=\frac{1}{11}A$	solve (7) fo	or i ₁ , then us	se (10)
(12) $i_2 = -i_1 - i_3 = -\frac{1}{11} - \frac{4}{11} = -\frac{5}{11}A$									solve (1) for i ₂ , use (10) and (11)		

Notes:

- i₁ and i₃ are both positive so the directions given for currents i₁ and i₃ are correct.
- i_2 is negative so its current direction is the opposite of that given.
- Both batteries are supplying power because their currents are flowing out of the positive terminals.