CROSS-PRODUCT REVIEW

The cross product (or vector product) between two vectors \mathbf{A} and \mathbf{B} is written as $\mathbf{A x} \mathbf{B}$. The result of a cross-product is a new vector. We need to find its magnitude and direction. (See section 3-7 in the text for more review.)
Magnitude: $|\mathbf{A x B}|=\mathrm{AB} \sin \theta$. Just like the dot product, θ is the angle between the vectors \mathbf{A} and \mathbf{B} when they are drawn tail-to-tail.

Direction: The vector $\mathbf{A x B}$ is perpendicular to the plane formed by \mathbf{A} and \mathbf{B}. Use the right-hand-rule (RHR) to find out whether it is pointing into or out of the plane.
Right-hand-rule (RHR): Here's how it works. Imagine an axis going through the tails of \mathbf{A} and \mathbf{B}, perpendicular to the plane containing them. Grab the axis
 with your right hand so that your fingers sweep \mathbf{A} into \mathbf{B}. Your outstretched thumb points in the direction of $\mathbf{A x B}$.

Note that $\mathbf{B x A}$ gives you a new vector that is opposite to $\mathbf{A x B}$. Why? Because, now you have to sweep B into \mathbf{A}.

Cross-product facts:

$$
\begin{array}{ll}
\mathbf{B} \times \mathbf{A}=-\mathbf{A} \times \mathbf{B} & \\
|\mathbf{A x B}|=0 & \begin{array}{l}
\text { if } \mathbf{A} \text { and } \mathbf{B} \text { are parallel, because then } \theta=0^{\circ} \text { or } \theta=180^{\circ} \\
\text { degrees. This gives the minimum magnitude. }
\end{array} \\
|\mathbf{A x B}|=\mathrm{AB} & \begin{array}{l}
\text { if } \mathbf{A} \text { and } \mathbf{B} \text { are perpendicular, because then } \theta=90^{\circ} \text { or } \\
\\
\\
\theta=270^{\circ} \text { degrees. This gives the maximum magnitude. }
\end{array}
\end{array}
$$

Here's a test to see if you understand how to use the RHR (answers are on the
 back of this page). In each case, decide whether $\mathbf{A x B}$ points up, down, left, right, into the page, or out of the page. and a vector pointing into it.
 2

3

5

6

Finally, there is another way to evaluate the cross-product, given \mathbf{A} and \mathbf{B} in component form:

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left(A_{y} B_{z}-B_{y} A_{z}\right) \hat{i}-\left(A_{x} B_{z}-B_{x} A_{z}\right) \hat{j}+\left(A_{x} B_{y}-B_{x} A_{y}\right) \hat{k}
$$

Differences between the dot- and cross-products: The biggest difference, of course, is that $\vec{A} \bullet \vec{B}$ is a number and $\vec{A} \times \vec{B}$ results in a new vector. Also, when the magnitude of the dot product is a maximum, the magnitude of the cross-product is zero and vice versa.

Moreover, because $\vec{A} \bullet \vec{B}=A B \cos \theta$, the dot product is proportional to:
The magnitude of \vec{A} times the component of \vec{B} that is parallel to \vec{A}.
On the other hand, the cross-product magnitude is given by $A B \sin \theta$, so it is proportional to:
The magnitude of \vec{A} times the component of \vec{B} that is perpendicular to \vec{A}.

