(1) Here's a geometry useful for gettich the Δz is the text

I used something simple, solvice for of in the figure:

(2a) The answer is close to 60 mW .
(2b) You can use a generalization of figure 5.10(b) and associated discussion or you can use the generalized equation for the phase difference between the local osc. and signal beams. phase difference for aligned beams: $\Delta \delta=\left(\mathrm{k}_{\mathrm{LO}}-\mathrm{k}_{\mathrm{S}}\right) \mathrm{x}-\left(\omega_{\mathrm{LO}}-\omega_{\mathrm{s}}\right)^{\mathrm{t}}+\left(\varphi_{\mathrm{LO}}-\varphi_{\mathrm{s}}\right)$ general expression for the phase difference: $\Delta \delta=\left(\vec{k}_{L O}-\vec{k}_{S}\right) \cdot \vec{r}-\left(\omega_{\mathrm{LO}}-\omega_{\mathrm{S}} \mathrm{t}^{\mathrm{t}}+\left(\varphi_{\mathrm{LO}}-\varphi_{\mathrm{s}}\right)\right.$
(3) For 500 nm , I get $\mathrm{v}_{\mathrm{g}}=1.929 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(4) The discussion on pages $235-236$ basically explains how to solve this problem.
(5) Unless told otherwise, the medium between the mirrors is just air. The mirror separation is large compared to a wavelength, so expect numbers appropriate for a precision instrument.
(6) This is, in class, what I called an etalon. It's just a slab of germanium, but it can be analyzed the same way as in the previous problem. Assume the light is normally incident.

