Kecop: You get the bear node at "1" for frie: Find [AU] + -1 & A+U & 1 (notes poil) $k = \frac{2B}{D-A}$ $L_{2} = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{|B|^{2}}{\left[1 - \left(\frac{440}{2}\right)^{2}\right]^{\frac{1}{2}}}$ $\begin{bmatrix} AB \\ cD \end{bmatrix} = \begin{bmatrix} i & q \end{bmatrix} \begin{bmatrix} i & o \\ -\frac{3}{R} & j \end{bmatrix} \begin{bmatrix} i & g \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i & g \\ 0 & j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i & g$ ton coy other &: 8 = AE,18 C8,1D $f = R, f = R_{1}$ $f = R, f = R_{1}$ $Find \begin{bmatrix} A, B, \\ G, 0 \end{bmatrix} \in$ f = P $Find \begin{bmatrix} A, B, \\ G, 0 \end{bmatrix} \in$ Find0 = A, O, E/ At the left Aithor of the for stability Itol county; $R = R_1$ $\omega = \int_{a}^{A^{-1}} \left[\frac{3,0}{A,G} \right]^{4}$ $\begin{bmatrix} A, 0, \\ c, 0, \end{bmatrix} = \begin{bmatrix} i & o \end{bmatrix} \begin{bmatrix} i & d \end{bmatrix} \begin{bmatrix} i & o \end{bmatrix} \times \begin{bmatrix} i &$ At the right mover: K. K. W= A [-A, B] 2 Minow of giel- ki special cose: empty auity (notes \$64,70) stubility condition : 0 = 9, 9 = 1 Wo = / [] [], 1 (- 7, 2)] [(Wasst) [7, 1 2, -27, 7, 7 K $\omega_{j} = \int \frac{L}{\pi} \left[\frac{\varphi_{2}}{\varphi_{j}} \left[\frac{\varphi_{2}}{\varphi_{j}} \right]^{2} \right]$ L 72 (1-91) (Weist location) L = $\omega_{2} = \int \frac{dL}{dT} \left[\frac{y_{1}}{y_{2}(1-y_{1}y_{2})} \right]^{y_{1}}$ 7,1 %- 29,5 messived with respect to norrow \$

Problem Set #1, Problem 5

5) (Text problem 2.5) The R₁ laser transition of ruby has, to a good approximation, a Lorentzian lineshape of FWHM width 330 GHz at room temperature. The measured peak transition cross-section is $\sigma = 2.5 \times 10^{-20} \text{ cm}^2$. The index of refraction of ruby is n = 1.76. Calculate the radiative lifetime, τ_R . (Recall that A = $1/\tau_R$.)

Discussion:

The problem asks for the radiative lifetime, meaning the lifetime due to spontaneous emission. However, you're given the <u>actual</u> $g(v-v_0)$ lineshape which has both radiative and other processes contributing. Thus, you can't directly get the *radiative* lifetime from the lineshape width alone using $\tau_R = 1/\pi\Delta v$.

The radiative lifetime depends on the cross-section which depends on g and you're given enough information about these to work the problem. Note, however, that it is the full linewidth, containing radiative and other contributions, that determines radiative lifetime. This isn't a contradiction. A spontaneous emission event must yield a photon in the spectral line of the system and if that line is broadened by, for example, non-radiative transitions that will affect the radiative rate.