The BaBar LST detector High Voltage system
Design and implementation

Gabriele Benelli
K.Honscheid, E.A. Lewis,
J.J.Regensburger, D.S. Smith
The Ohio State University
Outline

- HV requirements
- Design
- Features
- Controls and running experience
- Summary and conclusion
• Limited Streamer Tubes (LSTs) chosen to replace the rapidly ageing Resistive Plate Chambers (RPCs) in the BaBar Instrumented Flux Return (IFR) as muon detectors

• BaBar LSTs:
 - Tubes with 7 or 8 wires (cells) coupled in 4 HV channels
 - Active region between 5 and 6 kV
 - Readout signals AC coupled to HV channels
• Very high granularity:
 1,164 tubes -> 4,656 HV channels

• HV operating point affects efficiency and currents

• Radial distribution of LSTs in 12 layers of 20 tubes or less:
 – Tubes in layers closer to the interaction point draw more current
 – Losing one layer for a short time does not affect data quality

• No need for individual tube HV control

• High luminosity or background conditions may require to operate the inner layers tubes at a lower working point

BaBar LST HV requirements

12 LST layers +6 absorber layers per sextant

Single layer does not affect global efficiency
BaBar LST HV

- Typical currents at 5.5kV per tube:
 - No beam 15-100nA
 - With beam 50-1000nA

- Self-discharge mode:
 - Current rises up quickly to over 3000nA due to one single HV output

- Monitoring current for whole tube (4 HV outputs) is sufficient:
 - Built-in flexibility to disconnect individual HV outputs and treat separately

- Overcurrent protection for self-discharge mode

- Trip logic
OSU HVPS features

- 320 HV outputs
- Variable output voltage 0-6kV
 - 4 independent HV groups of 80 HV outputs at same voltage setting
- 80 current measurement channels
 - 4 paralleled HV outputs per channel
- Add picture of back panel (This one for now, add animation or pointers for 1 tube->4 pins, 20 ch: 4 pins per 10 ch groups)
OSU HVPS ingredients

- Rabbit microcontroller
- Xilinx FPGA (data collection and control signal generation)
- Ultravolt DC-DC converter (internal HV power supply)
- 4 variable HV regulators
- 80 current measurement modules
- 320 2mm banana plug connectors (+ grounds)
• 0-12 µA current measurement with 1nA resolution
• Floating power supply referenced to the module output voltage:
 - Operation at any output voltage
 - Floating circuitry survives unexpected output transients
• Low power ADC circuit using a voltage controlled oscillator (VCO)
• VCO frequency transformer coupled to low voltage for counting
• Frequency readout by Xilinx FPGA
• Output overcurrent protection
Current monitor diagram

- Floating +5V (DC) power supply + VCO clock
- Output current ADC
- Sense resistor
- Voltage to frequency
- Voltage buffer

IEEE Nuclear Science Symposium October 27th 2005

BaBar LST HV system
Overcurrent protection

- Based on the LST principle of operation:
 - Typical operational currents are small
 - Self-discharging mode causes high currents (>2.5µA)
 - Discharge stops when voltage drops below LST active region

- Overcurrent protection threshold:
 \[I_{\text{Thres}} = \frac{(V_{\text{BRICK}} - HV\ SET)}{500 \text{MOhm}} \]
 - Software Adjustable (via V_{\text{BRICK}})

- Overcurrent protection

- V_{\text{BRICK}} = 7kV
 - Channel 1, Vin=6500
 - Channel 2, Vin=6500
 - Channel 3, Vin=6500
 - Channel 1, Vin=7000
 - Channel 2, Vin=7000
 - Channel 3, Vin=7000

- Overcurrent protection

- V_{\text{BRICK}} = 6.5kV
 - Channel 1, Vin=6500
 - Channel 2, Vin=6500
 - Channel 3, Vin=6500

- Overcurrent protection

- I_{\text{Thres}} = 3µA

- Overcurrent protection

- I_{\text{Thres}} = 2µA
• Internal Ultravolt DC-DC converter (0-10kV at 3mA)
• 4 independent HV group voltages set by 12-bit DACs through Xilinx FPGA
• HV group output voltage measured by VCO ADC circuit
Digital Board/Firmware

- **Rabbit RCM-3200** microcontroller with **Dynamic C** embedded software:
 - Monitoring and control algorithms
 - Ramping and trip logic
 - Detector controls integration
- **FPGA** (low level logic and signal conditioning): **Xilinx Spartan XCS-30**
- Input/Output through **Ethernet** or **CANbus**

[ADD PIC OF DIGITAL BOARD]
Built-in Ramping and Trip Logic

- **Configurable ramping logic:**
 - Separate ramp up and ramp down speeds
 - Intelligent ramping (regulate speed to prevent spike trips from charging currents)

- **Sophisticated trip logic:**
 - Spike trip
 - Time over threshold trip:
 - Individual channel trip level
 - Individual HV group trip time
 - Ramping and stable HV trip level and trip time
 - Internal power supply trip

- **Diagnostic:**
 - CANbus and Ethernet:
 - Status reporting
 - Ad hoc diagnostic
 - Rabbit Serial output:
 - Operation log and debug diagnostic
Detector Controls

- Qt standalone Ethernet GUI
- BaBar slow controls integration:
 - MVME5500 IOC, running RTEMS
 - EPICS detector control software:
 - State machine sequencers, controls and panels
 - Alarm handler
 - Database archiving
QC and beam experience

- 25 HVPS have been built:
 - 18 will power the LST detector
 - 3 will be “hospital” supplies
 - 4 spares
- 23 HVPS currently at SLAC:
 - 6+2 used in BaBar to power top and bottom sextants
 - 15 used for QC and conditioning of the remaining uninstalled sextants
- They were used for QC (now complete)
-
Beam experience:
- Innermost layers tubes drew high currents as a function of luminosity
- First two layers tubes were split into two HVPS channels
- Extrapolating to higher luminosity shows the overcurrent protection threshold in the HVPS needs to be increased

Estimate for 2×10^{34} luminosity is 8000 nA per tube

With a firmware upgrade, already planned, the LST HVPS will be able to power the inner tubes in this scenario

An advantage of a flexible custom HV system!
Summary and conclusions

• The OSU HV system provides the BaBar LST detector with a versatile and robust solution

• Excellent performance and flexibility experienced during QC and data-taking

• Ready for the rest of the LST installation in Summer 2006
• BACK-UP SLIDES
The BaBar LST detector

• BaBar Limited Streamer Tubes (LSTs):
 - Tubes with 7 or 8 wires (cells)
 - Cells are (1.75x1.75)cm² and 358cm long
 - Wires coupled in 4 HV channels per tube
 - The 4 HV channels are readout channels
 - Operated at 5500V, with Ar/Iso/CO₂ gas mixture (3%/8%/89%)

• Z-strips:
 - Vacuum laminated Cu-foil + Mylar
 - 96 strips (orthogonal to LST wires)
 - 35mm wide strips separated by 2mm gap

• LSTs were installed in summer 2004 in the IFR top and bottom sextants:
 - 12 active LST layers per sextant
 - 6 layers of brass per sextant
• Very high granularity:
 1164 tubes → 4656 HV channels
LST layer arrangement

Corner Plate Edge

Horizontal Flux Bar

400

800

1600
LST layer arrangement
OSU HVPS features

- Variable output voltage 0-6kV
- 320 HV outputs
- Channels are grouped into 4 HV groups of 20 channels each
- Current measurement resolution 1 nA (0-12µA)
- Voltage measurement resolution 1V (1-6kV)
- Individual channel overcurrent protection
- Ramping and trip logic
- Ethernet and CANbus communication protocol
Single Rates

- Tubes are tested by scanning their counting rates at several HV points (single rate measurement):

- Single rates measurements are done once a month
- All tubes show nice plateaus
LST radiography

LST Layers

Wire holders

Top

Bottom
LST Muon ID Performance

- Pion rejection vs. Muon efficiency for high and low momentum muons
Rabbit/Xilinx/Boards/Interlocks

- Microcontroller Rabbit (Ethernet port) RCM-3200
- FPGA Xilinx Spartan XCS-30
- Dynamic C embedded software developed
- I/O:
 - Ethernet
 - CANbus controller Philips SJAXXXX
- Front panel interlocks:
 - HV external enable signal
 - HV enable switch
 - Injectable voltage
 - Trip
 - Ramping
 - Go to Injectable voltage
- LEDs:
 - HV on for each HV group
 - Ramping, trip, Injectable, etc
Detector controls Features

- Injectable/Runnable
- Alarm Handler
- Ambient DB and Archiver
- Save restore
- Trip reporting
- Automated Trip reset
- Single Rate
- Conditioning
The LST HV system

- **OSU HVPS:**
 - Run5: 6 HVPS + 1 hospital supply
 - HV output up to 6000V
 - 80 current monitoring channels
 - 4 HV output pins per channel (corresponding to a tube)
 - High granularity (320 outputs)
 - 4 HV groups of 20 channels (corresponding to a layer)

- **Safe for detector:**
 - Individual channel LST overcurrent protection
 - Sophisticated trip logic (spike, time over threshold, ramping, internal power supply)
 - HV control box to provide input to BaBar SIAM injection inhibit

- **Safe for operations:**
 - Removable key
 - External signal/front panel/software HV enables
 - Highest output current per channel 12 microAmps (startle hazard)

- Fully integrated (via CANbus) in BaBar ODC and state machine

- **Easy access for maintenance**
- **Upgradeable firmware to implement new features**
LST HV system

• Run5 LST HV system performance was fine

• Beam experience:
 - Some wire channels showed a repetitive trip behavior and the hospital HVPS helped recover some of these channels. Problematic channels are operated at lower voltage
 - Frequency of trips of LSTs due to self-sustained discharge at higher luminosity suggests the implementation of an automatic trip reset functionality

• A few problems:
 - 2 HVPS failed (with a known failure mode) in IR2 and they were replaced
 - LST SIAM injection inhibit signal glitch due to a firmware bug, it was solved with a firmware upgrade

• All 23 LST HVPS (21+2 spares needed for final configuration) are at SLAC and are working fine:
 - 7 HVPS in IR2 power top and bottom sextant (including hospital)
 - 1 extra spare ready in IR2
 - 13 HVPS powering tubes in CEH and gaining operational experience
 - 2 extra spares in CEH
The LST slow controls

• IOCs:
 - ifr-mon, ifr-hv, lst-hv
 - All running VxWorks and EPICS 3.14.7 (CBlow task patch is in)
 - Using lst-test in CEH (controlling 15 supplies and 1 GMB):
 • PPC IOC
 • RTEMS operating system
 • EPICS 3.14.7
 - Status:
 • All IOCs running smoothly

• ODC:
 - The first deployment of a PPC/RTEMS IOC in IR2 (in June) caused communication problems (and some down time, half of the time listed in Steve's wall of shame for LSTs)
 - After a quick revert to the MVME/VxWorks old solution, no LST IOC crashes experienced.
 - A few new features/utilities introduced for operations:
 • Configuration tools
 • Automatic trip logging/reporting/paging
• Di-muon event in the LSTs
CEH status

• All LST modules, cables and HVPS are at SLAC:
 - All HVPSes, long- and short-haul cables working fine and being used
 - Finished QC on all LST modules (many man-years effort, thanks to the CEH shifters crew!)
 - QC data analysis in progress, already plenty of good modules for next installation

• Operations:
 - Keep all tubes under gas and HV
 - Opportunity of shift sign-up for next summer installation