Physics 263: MATLAB Cheatsheet III

This is the third collection of basic information and techniques for using MATLAB.

1. Symbolic Partial Derivatives

This is a supplement to the discussion from “MATLAB Cheatsheet I”. Any symbol other than the differentiation variable in a function being differentiated using \texttt{diff} is assumed to be constant. So, for example, if we want to take

\[
\frac{\partial f(x,y)}{\partial x} \quad \text{where} \quad f(x,y) = 2xy + x^2 + y^3,
\]

\[
\gg \text{syms } x \ y
\]
\[
\gg f = 2\times y + x^2 + y^3
\]
\[
\gg \text{diff}(f,x)
\]

where we have assigned the symbolic expression for our function to \texttt{f}. This enables us to easily take other derivatives. For example, we can find in turn: \(f_y, f_{xx}, \) and \(f_{xy} \) using

\[
\gg \text{diff}(f,y)
\]
\[
\gg \text{diff}(f,x,2) \quad \% \text{ the "2" means 2nd derivative}
\]
\[
\gg \text{diff(diff(f,y),x)} \quad \% \text{ a mixed partial derivative}
\]

and so on. Sometimes after taking a derivative the answer will be hard to read. A more readable form is obtained using \texttt{pretty}. For example,

\[
\gg f = x/(x^2+y^2);
\]
\[
\gg \text{diff}(f,y)
\]

\[
\text{ans } =
\]
\[
-2/(x^2+y^2)^2*x*y
\]

\[
\gg \text{pretty(ans)}
\]

\[
\begin{array}{c}
x y \\
-2 \quad \text{-----------}
\end{array}
\]
\[
\begin{array}{cccc}
2 & 2 & 2 \\
(x & + & y)
\end{array}
\]

2. Three-Dimensional and Contour Plots I

There are many ways to make three-dimensional plots in MATLAB, some of which were illustrated in the \texttt{eqheat.m} example from 1094 Session 1. Here we’ll give a sampling of one type of 3D plot and one type of contour plot.
a. Making a 3D surface or mesh plot. Suppose we want to plot the function \(f(x, y) = x^3 - y^3 - 2xy + 2 \) with \(x \) and \(y \) both ranging from \(-1\) to \(+1\). We make the \(x-y \) grid using the function meshgrid:

\[
\begin{align*}
\text{>> } & [X, Y] = \text{meshgrid(linspace(-1,1,20),linspace(-1,1,20));} \\
\text{with 20 points in each direction or} \\
\text{>> } & [X, Y] = \text{meshgrid(-1:.1:1, -1:.1:1);}
\end{align*}
\]

to have a grid spacing of 0.1. We want to use a reasonable number of points, since the number of points will affect the final appearance of the grid surface, but we can always change this later.

We calculate \(f \) for each of the \((x, y)\) values in \([X,Y]\) with \([\text{we'll use } Z \text{ for } f(x, y)]\):

\[
\text{>> } Z = X.^3 - Y.^3 - 2*X.*Y + 2; \ 	ext{note the use of } .^{'},s
\]

Finally, we plot it and add a colorbar (a translation between colors and the value of \(Z \)):

\[
\text{>> surf(X,Y,Z) \ 	ext{ also try mesh(X,Y,Z)} \\
\text{>> colorbar}
\]

b. Making a filled contour plot. To make a contour plot of the same \(f(x, y) \) over the same range, we set up \(X \), \(Y \), and \(Z \) the same way. If we want 10 filled contour levels, use:

\[
\text{>> contourf(X,Y,Z,10)}
\]

For a similar contour plot without the color filling, use contour instead of contourf.

3. Finding the Slope of a Straight Line on a Log-Log Plot

On a MATLAB log-log plot (where the logarithms are base 10 instead of natural logarithms), a straight line plot with slope \(a \) and intercept \(b \), namely

\[
(\log_{10} y) = a(\log_{10} x) + b,
\]

means that \(y \) has the power law behavior (make sure you can derive this!)

\[
y = 10^b x^a.
\]

If you’ve generated a set of points that seem to lie on a straight line on a log-log plot and you want to fit a line to them and determine the slope, we can use polyfit. Suppose the data we’ve generated is in the vectors \(x \) and \(y \). Then

\[
\text{>> my_fit = polyfit(log10(x),log10(y),1)} \ 	ext{ % the 1 means a linear fit} \\
\text{>> a = my_fit(1)} \ 	ext{ % the first element of my_fit is the slope} \\
\text{>> b = my_fit(2)} \ 	ext{ % the second element of my_fit is the intercept}
\]

will give you the slope \(a \) and intercept \(b \). We can add the fit line to the original plot with

\[
\text{>> fit_line = 10^b * x.^a; \ % reconstruct the power law} \\
\text{>> loglog(x,y,x,fit_line) \ % plot both on the same log-log plot}
\]

Note: Be sure to include in \(x \) and \(y \) only the region of the plot you want to fit.