Wednesday 7:00-20 Class

- Finite element problem.
 - What to do with a discontinuous boundary condition?
 - My solution: In triangle 1, \(A = 100 \)
 - In triangle 0, \(A = 0 \).
 - Other ideas?
 - A major flaw of the triangle check routine is revealed when points are on the sides of triangles.
 - Uses: if (double a == double b)
 - almost always a bad idea!
 - alternative: if fabs(a-b) < tolerance
 - for a small tolerance
 - check if no triangle is assigned.

- Assignment #2
 - Practice the Qt basics a lot more (finishing session 16)
 - You can substitute bonus problems.
 - Eg. random walk
 - GPlanner widget
 - (I haven't done this.)

- Today (and Monday)
 - Solving integral equations in the context of reproducing results from a paper.
 - I give you much less and want you to plan a solution, more than just solving the equation.
What you should take from the "Numerical Recipes" discussion.

If my equation is
\[g(t) = \int_{a}^{b} K(t,s) f(s) \, ds \]
known \(a \) \(b \) known
and we want to find \(f(s) \), this can be thought of as a
matrix equation
\[\hat{L} \cdot \hat{f} = \hat{q} \]

We can make it a matrix equation by dividing \([a, b]\) into
a grid: \(s_0, s_1, \ldots, s_n \) and using an integration formula
like Trapezoid rule, Simpson's rule, or Gaussian quadrature.

\[\Rightarrow \begin{align*}
 g(t) &\rightarrow g_i = g(t_i) \\
f(s) &\rightarrow f_j = f(s_j) \\
K(t, s) &\rightarrow K_{ij} = K(t_i, s_j)
\end{align*} \]

\[\Rightarrow \sum_{j=1}^{n} K_{ij} f_j g_j = g_i \quad \Rightarrow \text{standard matrix equation} \]
\[\text{for } i = 1, N \quad \text{(unique solution if } g(t) \text{ and } K \text{ is invertible)} \]

What if
\[f(t) = \int_{a}^{b} K(t,s) f(s) \, ds + g(t) \]

What is the matrix equation to solve?
\[\begin{align*}
 f_i &= \sum_{j=1}^{n} K_{ij} f_j + g_i \\
 \Rightarrow \sum_{j=1}^{n} (K_{ij} - S_{ij}) f_j &= -g_i
\end{align*} \]
Solving numerically:

- can use any quadrature, but if smooth and nonsingular,
 Gaussian quadrature is best.

\[
\int_a^b h(x) \, dx = \sum_{i=1}^n h(x_i) \, w_i \quad \text{where } x_i, w_i \text{ are calculated once at the beginning.}
\]

To evaluate \(f(t) \) at \(t + t_i \), use

\[
f(t) = \sum_{j=1}^N w_j K(t, s_j)f(s_j) + g(t)
\]

once you have found \(f(s_j) \).

Another method: iteration for \(f(t_i) = \int_{a}^{b} K(t, s) f(s) \, ds + g(t) \)

\[
f(t_i) = \sum_{j=1}^n K(t_i, s_j)f(s_j) + g(t_i)
\]

\[
f_{old}(t_i) = g(t_i)
\]

\[
f_{new}(t_i) = \sum_{j=1}^n K(t_i, s_j)f_{old}(s_j) + g(t_i) \quad \text{repeat until}
\]

changes are small.

- can use "fraction"
4/21/04

Quicks overview of Casper et al. paper.

- N spin-1/2 fermions in a one dimensional box of length L.
- Interact with S-function potentials.
- Continuum limit of Hubbard model in 1-d.

\[H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} - \sum_{i<j}^{N} \delta(x_i - x_j) \quad \delta_{ij} > 0 \]

- Density if \(\rho = N/L \).
- Goal: find the energy/ground state for the ground state.

For two particles, \(E_{1}(\mathbf{r}) = -\frac{m_0^2}{4\hbar^2} \quad \) (Just solve S-equation).

If we scale \(x_i \) by \(\rho \), density \(x'_i = \rho x_i \), then

\[H' = \frac{\rho H}{\rho^2} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \frac{\partial^2}{\partial x'_i^2} - \sum_{i<j}^{N} \delta(x'_i - x'_j) \]

with \(\lambda = \frac{m_0}{\rho \hbar} \) dimensionless.

So solving for one \(\lambda \) gives result for all combinations of \(N \) and \(\rho \) that give the same \(\lambda \).

In Appendix A, write or Gaudin equations for each solution:

\[E(\lambda) = \left(E_0(N)/N \right) / (E_0/2) \quad \text{for} \quad 0 \leq \lambda \leq \infty \]

Your job is to solve these equations.

\[F_{\lambda}(y) = \int_{-\infty}^{\infty} \frac{dy}{1 + k^2(k-y)^2} \]

unknown function

\[E(\lambda) = -1 + \frac{4}{\pi} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} [\delta(y) - F_{\lambda}(y)] \]

unknown, depends on \(\lambda \)