16. 780.20 Session 16

a. Follow-ups to Session 15

- **Temperature Diffusion in One Dimension.** The code eqheat.cpp simulates the time dependence of the temperature of a metal bar that is initially heated to 100°C and then allowed to cool with its ends kept at 0°C (the sides are assumed to be perfectly insulated so the heat flow is effectively one dimensional). The basic physics is that if there is a temperature gradient, then heat flows, but since energy is conserved there is a continuity equation. Let’s derive the corresponding differential equation describing the temperature. In the following, \(\kappa = 0.12 \text{cal/(s g cm}^\circ \text{C)} \) is the thermal conductivity, \(c = 0.113 \text{cal/(g}^\circ \text{C)} \) is the specific heat, and \(\rho = 7.8 \text{g/cm}^3 \) is the mass density.

Consider a small piece of metal with constant cross section \(A \) and length \(\Delta x \). The heat energy at time \(t \), \(\Delta Q(t) \), is given by the specific heat times the mass of the piece times the temperature, or

\[
\Delta Q(t) = [c \rho A \Delta x] T(x, t) + O(\Delta x)^2 .
\] (16.1)

(Dropping the \((\Delta x)^2\) contribution will mean that we can evaluate the temperature at \(x \) or \(x + \Delta x \) or \(x + \Delta x/2 \) and it doesn’t matter.) Now we can write:

Heat flow in at \(x \): \[-\kappa \frac{\partial T(x, t)}{\partial x} \cdot A \] (16.2)

Heat flow out at \(x + \Delta x \): \[+\kappa \frac{\partial T(x + \Delta x, t)}{\partial x} \cdot A . \] (16.3)

The continuity equation equates the net heat flow to the time rate of change of the heat energy:

\[
\frac{\partial \Delta Q}{\partial t} = c \rho A \Delta x \frac{\partial T(x, t)}{\partial t} = \kappa \left(\frac{\partial T(x + \Delta x, t)}{\partial x} - \frac{\partial T(x, t)}{\partial x} \right) \cdot A .
\] (16.4)

Upon dividing by \(\Delta x \) (and other factors), we recognize the difference of first derivatives in \(x \) as a second derivative (up to \((\Delta x)^2\) corrections). Thus, we obtain the diffusion equation

\[
\frac{\partial T(x, t)}{\partial t} = \frac{\kappa}{c \rho A} \left(\frac{\partial T(x + \Delta x, t)}{\partial x} - \frac{\partial T(x, t)}{\partial x} \right) \cdot A .
\] (16.5)

in the limit that \(\Delta x \) goes to zero.

The code eqheat.cpp implements this equation by calculating the temperature change from time \(t \) to time \(t + \Delta t \) at each point \(x \) using

\[
T(t + \Delta t, x) \approx T(t, x) + \Delta t \frac{\partial T(x, t)}{\partial t} + O(\Delta t)^2
\] (16.6)

and using the simplest finite-difference formulas to evaluate the second derivative in Eq. (16.5).

To get started, we need to specify the temperature for \(0 \leq x \leq L \) for the initial time and also
the boundary conditions at \(x = 0 \) and \(x = L \) for all times. This method might seem crude but foolproof, yet there is a major pitfall lurking: choosing values for \(\Delta t \) and \(\Delta x \). Unless

\[
\frac{\kappa}{c\rho} \frac{\Delta t}{(\Delta x)^2} \leq \frac{1}{4},
\]

(16.7)

the numerical solution will not decay exponentially (see Landau and Paez, Chapter 26 for an explanation [2]). This means that decreasing \(\Delta t \) helps (up to a point, as usual), but if we decrease \(\Delta x \) to increase accuracy, we better decrease \(\Delta t \) quadratically. In practice, if there are not analytic solutions for guidance, one needs to try out different \(\Delta x \) and \(\Delta t \) values until the result is both stable and physically reasonable.

- **Optimization Options for g++.** If you consult `man g++` you’ll find a multitude of options tailoring the optimization of your code with the g++ compiler. The general options -00 through -03 turn on collections of these options:

- **-00** Do not optimize.

- **-01** These optimizations strive to reduce code size and execution time, using optimizations that do not take a lot of compilation time. It turns on these optimization flags:
 - `fdefer-pop` - `fmerge-constants` - `fthread-jumps` - `floop-optimize`
 - `fif-conversion` - `fif-conversion2` - `fdelayed-branch`
 - `fguess-branch-probability` - `fprop-registers`

- **-02** Do all of the -01 optimizations plus many more:
 - `fforce-mem` - `fopti- mize-sibling-calls` - `fstrength-reduce`
 - `fcse-follow-jumps` - `fcse-skip-blocks` - `frerun-cse-after-loop`
 - `frerun-loop-opt` - `fgcse` - `fgcse-lm` - `fgcse-sm` - `fgcse-las`
 - `fdelete-null-pointer-checks` - `fexpensive-optimizations` - `fregmove`
 - `fschedule-insns` - `fsched- ule-insns2` - `fsched-interblock`
 - `fsched-spec` - `fcaller-saves` - `fpeep-hole2` - `freorder-blocks`
 - `freorder-functions` - `fstrict-aliasing` - `funit-at-a-time`
 - `falign-functions` - `falign-jumps` - `falign-loops` - `falign-labels`
 - `fcrossjumping`

- **-03** Do all of the -02 optimizations as well as
 - `finline-functions` - `fweb` - `frename-registers`

The man pages describe each of these options, although the explanations are not very clear to the non-expert. The basic message is that a lot of processing is going on behind the scenes to try to make the code run faster. You should also consider the hardware-specific options, such as `-march=i586` (for a pentium) or `-march=opteron` (for a 64-bit opteron).
b. Bound States in Momentum Space

The ordinary time-independent Schrödinger equation in coordinate space for a local potential is an ordinary differential equation:

\[-\frac{\nabla^2}{2\mu}\psi_n(r) + V(r)\psi_n(r) = E_n\psi_n(r) , \tag{16.8}\]

where \(\mu\) is the reduced mass (which is \(M/2\) if we are considering two interacting particles of mass \(M\) each). For scattering states, where \(E_n > 0\), any choice of \(E_n\) will give an acceptable solution (assuming \(V(r) \to 0\) sufficiently fast as \(r \to \infty\)). For bound states, only discrete values of \(E_n\) yield normalizable wave functions, so we have an eigenvalue problem. In the more general (and less familiar case), the potential is non-local and we have an integro-differential equation to solve:

\[-\frac{\nabla^2}{2\mu}\psi_n(r) + \int d^3r' V(r, r')\psi_n(r') = E_n\psi_n(r) . \tag{16.9}\]

In momentum space, the equation for the momentum space wave function \(\psi_n(k)\) is (almost) always an integral equation (unless the potential is “separable”). Consider the abstract Schrödinger equation,

\[\hat{H}\langle \psi_n \rangle = \left(\frac{\hat{P}^2}{2\mu} + \hat{V}\right)\langle \psi_n \rangle = E_n\langle \psi_n \rangle . \tag{16.10}\]

Now hit this on the left with \(\langle k |\) and insert

\[1 = \int d^3k' |k'|\langle k'| \]

(16.11)

to obtain

\[\frac{k^2}{2\mu}\langle k |\psi_n \rangle + \int d^3k' \langle k |V| k' \rangle\langle k'| \psi_n \rangle = E_n\langle k |\psi_n \rangle \tag{16.12}\]

or, in an alternative notation for the same thing,

\[\frac{k^2}{2\mu}\psi_n(k) + \int d^3k' V(k, k')\psi_n(k') = E_n\psi_n(k) . \tag{16.13}\]

If we expand in a partial wave basis (check your favorite quantum book!), then the resulting one-dimensional equation in the \(l^{th}\) partial wave takes the form

\[\frac{k^2}{2\mu}\psi_n(k) + \frac{2}{\pi} \int_0^\infty V(k, k')\psi_n(k') k'^2 dk' = E_n\psi_n(k) , \tag{16.14}\]

where \(k \equiv |k|\) and we omit \(l\) labels.

The potential in partial waves is the “Bessel transform” of the full potential (why not the Fourier transform?):

\[V(k, k') = \int_0^\infty r dr \int_0^\infty r' dr' j_l(kr')V(r', r)j_l(k'r) , \tag{16.15}\]
which reduces for a local potential to
\[V(k, k') = \int_0^\infty r^2 dr \, j_i(kr)V(r)j_i(k'r) \, . \] (16.16)

Recall that the first two spherical Bessel functions are
\[j_0(z) = \frac{\sin z}{z} \, , \quad j_1(z) = \frac{\sin z}{z^2} - \frac{\cos z}{z} \, , \] (16.17)
so for \(l = 0 \), the potential is simply
\[V(k, k')_{l=0} = \frac{1}{kk'} \int_0^\infty dr \, \sin(kr)V(r)\sin(k'r) \, . \] (16.18)

c. Numerical Solution

So how do we solve for the \(E_n \)'s and corresponding \(\psi_n(k) \)'s in Eq. (16.14)? As we’ve done before, we discretize it (that is, break up the continuous range in \(k \) into mesh points) and turn it into a matrix eigenvalue problem. Thus, if we have an integration rule (such as Gaussian quadrature) that performs an integral from 0 to \(\infty \) as a sum over \(N \) points \(\{k_i\} \) with weights \(\{w_i\} \), then the integral over the potential becomes
\[\int_0^\infty k'k^2 dk' \psi_n(k') \approx \sum_{j=0}^{N-1} w_j k_j^2 V(k_i, k_j) \psi_n(k_j) \, . \] (16.19)

Thus the Schrödinger equation becomes
\[\frac{k_i^2}{2\mu} \psi_n(k_i) + \frac{2}{\pi} \sum_{j=0}^{N-1} w_j k_j^2 V(k_i, k_j) \psi_n(k_j) = E_n \psi_n(k_i) \, , \quad i = 0, \ldots, N - 1 \, . \] (16.20)

This is just the matrix problem
\[\sum_j H_{ij} \psi_n[j] = E_n \psi_n[j] \, , \] (16.21)
with
\[H_{ij} \equiv \frac{k_i^2}{2\mu} \delta_{ij} + \frac{2}{\pi} \frac{V(k_i, k_j)}{k_j^2} w_j \, , \quad i, j = 0, \ldots, N - 1 \, . \] (16.22)

We can turn this over to a packaged matrix eigenvalue routine and get the eigenvalues and eigenvectors directly.

Note, however, that the matrix is not symmetric, so we can’t use the simple GSL routines. Instead we’ll use a general eigenvalue solver from the LAPACK subroutine library. There are versions of LAPACK for C and C++, but the most robust version is written in Fortran. So we’ll use this problem as an excuse to see how to call Fortran routines from C++.
d. Delta-Shell Potential

The potential we’ll use in this session is the “delta-shell” potential, which in the coordinate representation is

\[V(r) = \frac{\lambda}{2\mu} \delta(r - b) , \]

(16.23)

where \(\mu \) is the reduced mass of the particles interacting via \(V \) (or just think of \(\mu \) as the mass of a particle in the external potential \(V \)). Note that this is not a delta function at the origin; the potential is zero unless the particles are separated precisely by a distance \(r = b \). So if we have a force that effectively acts over a very short but nonzero range of distances, this might be a reasonable (although crude) representation. Besides the mass, the parameters are the range \(b \) and the strength \(\lambda \). From Eq. (16.23) you should be able to directly determine the units of \(\lambda \).

The s-wave \((l = 0)\) Schrödinger equation has (at most) one bound-state (that is, \(E < 0 \)) solution. If we define \(\kappa \) by writing the bound-state energy as

\[E = -\frac{\kappa^2}{2\mu} , \]

(16.24)

the value of \(\kappa \) is determined by the solution to the transcendental equation

\[e^{-2\kappa b} - 1 = \frac{2\kappa}{\lambda} \quad (l = 0) . \]

(16.25)

For general \(l \), the bound-state \(\kappa \) is the solution to \([1] \)

\[1 - \frac{\lambda}{i\kappa} (i\kappa b)^2 j_l(i\kappa b) [n_l(i\kappa b) - ij_l(i\kappa b)] . \]

(16.26)

Can you derive either of these results? Is there always one bound state?

The delta-shell potential is trivial to convert to momentum space:

\[V(k', k) = \int_0^\infty r^2 dr \frac{\lambda}{2\mu} \delta(r - b) j_l(kr) = \frac{\lambda b^2}{2\mu} j_l(kb) j_l(kb) , \]

(16.27)

where \(l \) is the angular momentum state we are considering. Note that this is not a very well-behaved function in momentum space! That means you may have to be clever in doing a numerical integral. The wave function of the \(l = 0 \) bound state in coordinate space is

\[\psi_0(r) = \int_0^\infty k^2 dk \psi_0(k) j_0(kr) \propto \left\{ \begin{array}{ll} e^{-\kappa r} - e^{\kappa r} , & \text{for } r < b , \\ e^{-\kappa r} , & \text{for } r > b . \end{array} \right. \]

(16.28)

e. Calling Fortran from C++

We’ll use the example of calling a LAPACK fortran library machine from C++. In order to make the call as similar as possible to the fortran, we’ll use C++ “references” rather than pointers. A reference is an alias to a variable (something like a short-cut in Windows). We declare a pointer using a *; a reference is declared using a &. Here’s what we need to do:
1. Add an underscore to the lowercase name of the Fortran routine, e.g., DGEEV becomes dgeev_
2. Include a prototype declaration of the Fortran subroutine. Put extern "C" { } around the prototype. For example (note that most are declared const):

```c
extern "C"{
    void dgeev_(const char &JOBVL, const char &JOBVR,
                const int &dimension1, double Hmat_passed[],
                const int &dimension2, double Eigval_real[], double Eigval_imag[],
                double Eigvec_left[][], const int &LDVL,
                double Eigvec_right_passed[], const int &LDVR,
                double WORK[], const int &LWORK, int &INFO);
}
```

3. The variable type used in C++ should match the Fortran type, as illustrated in this chart (which uses the variable definitions in the Session 16 code `deltashell_boundstates.cpp`):

<table>
<thead>
<tr>
<th>Fortran</th>
<th>C++</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined</td>
<td>passed</td>
</tr>
<tr>
<td>CHARACTER*1 JOBVL</td>
<td>JOBVL char</td>
</tr>
<tr>
<td>INTEGER N</td>
<td>N int</td>
</tr>
<tr>
<td>REAL8 WR()</td>
<td>WR double* Eigval_real</td>
</tr>
<tr>
<td></td>
<td>= new double [dimension]</td>
</tr>
<tr>
<td></td>
<td>double Eigval_real[]</td>
</tr>
<tr>
<td></td>
<td>Eigval_real</td>
</tr>
</tbody>
</table>

4. Fortran arrays start at 1 rather than 0. This is not a problem when passing arrays from C++ to Fortran. Simply fill the C++ array as usual (starting from 0), pass the pointer to Fortran, and it will be interpreted as starting from 1.

5. The Fortran array element A(3,5) is A[4][2] in C++ (subtract one for zero base indexing and reverse the order of subscripts). You must fill your C++ arrays accordingly.

6. If you use g++, compile the C++ parts as usual and then link using `-lm -lblas -llapack -lg2c`
 (For libraries other than LAPACK, link with the appropriate library names; you’ll always need -lg2c, however.)

f. Dynamically Allocating Space for Arrays

Suppose we want to allocate f[i] with space for maxsize elements. Then:

```c
  double* f = new double [maxsize]
```

after which we can refer to f[0], f[1], ..., f[maxsize-1]. To deallocate f and free the memory:

```c
  delete [] f
```

(note that no number appears between the []'s). See the `deltashell_boundstates.cpp` code for an example of how to allocate and deallocate two-dimensional arrays.

g. References