5. 780.20 Session 5

a. Follow-up to Numerical Derivative Round-Off Errors

In Session 4, we looked at error plots for various ways to calculate numerical derivatives. Here is a plot showing results for forward difference, central difference, and a Richardson extrapolation of the central difference results:

Since we are plotting the logarithms of the errors, we have fitted straight lines to the various plots and find that the algorithm errors are $O(h)$, $O(h^2)$, and $O(h^4)$, respectively. We have also fitted the region of round-off errors and find a slope of -1. Let’s review why this happens.

Consider the forward difference case for simplicity. Recall from the Session 1 notes that any number z is related to its machine number computer representation z_c by

$$z_c = z(1 + \epsilon) \quad \text{with} \quad |\epsilon| \leq \epsilon_m ,$$

where ϵ_m is the machine precision. Apply that to the forward difference formula as calculated on the computer:

$$\frac{f_c(x + h) - f_c(x)}{h} = \frac{f(x + h)(1 + \epsilon) - f(x)(1 + \epsilon')}{h}$$
\[
\frac{f(x + h) - f(x)}{h} + f(x) \frac{\epsilon - \epsilon'}{h} \\
\approx \frac{df}{dx} + O(h) + f(x) \frac{\epsilon - \epsilon'}{h}.
\]

Because the relative round-off errors ϵ and ϵ' are randomly distributed from $-\epsilon_m$ to $+\epsilon_m$, they are unlikely to cancel closely, so in the second line we used that $f(x + h) \approx f(x)$. In the final line, we identify the algorithm error, which will contribute to the relative error a term proportional to h, and the net round-off error, which will contribute to the relative error the term $(\epsilon - \epsilon')/h$. This explains not only the slope of -1, but the intercept, which is of order $\log_{10} \epsilon_m$. The same argument applies to the other derivative formulas, so the round-off error curve is universal.

b. Other Follow-ups to Session 4 (and earlier)

- **Adding Coefficients from Fits to a Plot**

 You may have noticed in the plot on the first page that values for the fit parameters determined by gnuplot are listed on the plot. These were not put in by hand but inserted automagically by using a `set label` command in the plotfile. For example, the last two fits and the corresponding labels were made using:

 \[
 f_3(x) = a_3 \times x + b_3 \\
 f_4(x) = a_4 \times x + b_4
 \]

 fit [-2.:1] f3(x) "derivative_test.dat" using (1):(4) via a3,b3

 fit [-10:-3] f4(x) "derivative_test.dat" using (1):(4) via a4,b4

 set label "(a3,b3) = (%-+4.1f", a3, ", %-+4.1f", b3, ")" at graph .44,.80
 set label "(a4,b4) = (%-+4.1f", a4, ", %-+4.1f", b4, ")" at graph .44,.76

 The labels were positioned using `at graph x,y`, where the x,y coordinates are in the “graph” coordinate system that runs from $(0,0)$ in the lower left to $(1,1)$ in the upper right. (You can also use the plot coordinate system by omitting the word “graph”.) The values of a_3, a_4, and so on were printed using C language-style format specifications, namely `%-+4.1f`. This makes the printed number take up four spaces, with one digit to the right of the fixed decimal point, left justified and with a $+$ or $-$ sign. (To find out more about such formatting, give Google the search string “man 3 printf” and look at the first return page.)

- **Calculating relative errors.** If you have an approximate result approx and an exact result exact, you would typically calculate the relative error as

 \[
 \text{relative error} = \left| \frac{\text{exact} - \text{approx}}{\text{exact}} \right|.
 \]

 (Note that you take the absolute value of both numerator and denominator, so that the relative error is always positive, even if exact is negative.) But what if you have two answers and it is not clear which is better (or maybe that one result is better in one region and the other result is better elsewhere)? An additional problem is that if your result goes through
zero, the error in Eq. (5.3) blows up, which can be misleading in a plot of the error. Both problem are fixed if you find the relative error between result1 and result2 from

\[
\text{relative error} = 2 \frac{\text{result1} - \text{result2}}{\text{result1} + \text{result2}}.
\]

(5.4)

This uses the average of the two results for the denominator (note the factor of 2). If the two results are close in value, this will give effectively the same result as Eq. (5.3) and the graph of the error will be much better behaved if the results go through zero in different places.

- **Timing of matrix operations.**

 In Session 4, you were asked to check how the timing for a GSL eigenvalue routine scaled with the size \(N \) of the matrix (that is, how many seconds does an \(N \times N \) matrix take). If you had time to finish this, you might have found a plot like this:

![Graph showing the time to find eigenvalues of a Hilbert matrix using GSL routines.](image)

As usual, to check scaling we use a log-log plot. The plot here was generated from a plotfile that looked like:

```bash
# plot file for new eigen_test

set timestamp

set title 'Time to Find Eigenvalues of Hilbert Matrix'
set xlabel 'dimension of matrix'
set ylabel 'time in seconds'
```
set key left

set logscale
set xrange [50:1000]
set yrange [.05:1000]

f(x) = a*x + b
fit f(x) "eigen_test.dat" using (log10($1)):(log10($2)) via a,b

set term x11
plot "eigen_test.dat" using ($1):($2) title 'using GSL routines', \
10**b * x**a title 'time = C * (dimension)^{(3.5)}'

set out "eigen_test_new.ps"
set term postscript
replot

Note how the fit and the plot of the fit are done using the $1 and $2 variables. The result of the fit was $a \approx 3.5$ and $b \approx -7.9$. Thus \(\log(\text{time}) \approx 3.5 \log N - 7.9 \), or the time scaled like \(N^{3.5} \).

- Let’s see if we can make sense of this scaling result. Consider matrix multiplication as a typical matrix operation. How should it scale with the size of the matrix? Consider \(A \times B = C \) or

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1N} \\
a_{21} & a_{22} & \cdots & \cdots \\
\vdots & \ddots & \ddots & \cdots \\
a_{N1} & a_{N2} & \cdots & a_{NN}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1N} \\
b_{21} & b_{22} & \cdots & \cdots \\
\vdots & \ddots & \ddots & \cdots \\
b_{N1} & b_{N2} & \cdots & b_{NN}
\end{pmatrix}
=
\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1N} \\
c_{21} & c_{22} & \cdots & \cdots \\
\vdots & \ddots & \ddots & \cdots \\
c_{N1} & c_{N2} & \cdots & c_{NN}
\end{pmatrix}
\]

(5.5)

[Note: When we use C++ arrays in our programs to represent matrices, the numbering will be from 0 to \(N - 1 \) rather than from 1 to \(N \).] Let’s do some counting. There are \(N^2 \) matrix elements \(c_{ij} \) to calculate, and each one follows from \(N \) terms:

\[
c_{ij} = \sum_{k=1}^{N} a_{ik} \times b_{kj}
\]

(5.6)

so there are \(N^3 \) operations at a minimum. So if we have a full matrix, we would expect the matrix operations to scale at least as \(N^3 \), unless we have “tricks” to speed things up.

- By the scaling in the plot, how long would a \(10^6 \times 10^6 \) matrix take? How much memory would you need? In fact, it is routine to find eigenvalues from such large matrices (and larger). Clearly it must be done another way!

- **Pointers and void pointers again.**

 The example of void pointers in the Session 4 program `pointer_test.cpp` is always confusing. The only reason we introduce them now is to take advantage of the GSL library routines, which use them repeatedly. You are not expected to understand everything about pointers, but only to be able to imitate their use based on the examples. Some follow-up comments:
There are two ways to define structures, but you only have to use the one you find convenient. (They are both introduced only for completeness.) See section f.1 in the Session 4 notes for a discussion of the distinction between them.

In the `pointer_test.cpp` examples such as `f_struct`, there are also multiple ways of doing things, and several are shown. Simply use the one you find least confusing. Let’s dissect one of them from that function (see also section f.2 from Session 4).

```cpp
double passed_double_1 = ((struct parameters *) params_ptr)->a;
```

Our goal here is to recover one element of a structure whose address is passed to the function as the pointer `params_ptr`. The structure `parameters` is defined with `a`, `b`, `c`, and `num` components; here we recover the value of the `a` component. We use `->` instead of a period when we have a pointer to the structure. The rest is specifying that `params_ptr` is a pointer to a structure of type `parameters`. The `()`’s are important to include so that the statement is unambiguous! (Note that it is easiest to read the statement from right to left.)

c. Additional Notes on Programming in C++

- **Comments of the 780 codes so far.** The programs used in class evolved for the most part from programs supplied by Landau and Paez along with their “Computational Physics” text. They were originally written in C and translated without major changes to C++. As such, they are compact but often not written optimally. For example, in the `eigen_basis.cpp` code, parts should be split to separate functions and different files, and it should be easier to add additional potentials. We should take advantage of C++ classes. As we proceed, we’ll look back occasionally and see how they could be improved.

- **Namespaces.** You’ll have noticed the statement:

  ```cpp
  using namespace std;
  ```

at the beginning of our programs, following the `#include <iostream>` and other include statements. Namespaces are used in C++ to avoid collisions between variables or functions that have the same name. The real full name of the `cout` function is `std::cout`, which says that it is in the `std` (short for “standard”) namespace. The `using` command lets us skip the `std::` prefix, but in general it would be better to use the prefix. Later we’ll see how to define our own namespaces.

- **Scope of variables and global variables.** The “scope” of a variable refers to the region of the code where that variable is recognized. Some observations:

 - The scope of a variable declared within a function (including `main`) is, at most, that function (we say it is “local” to that function).

 - If declared within a “block” delimited by `{ }`’s, then the variable is only know within that block (we say it is “local” to that block). We’ve seen this with dummy index variables in `for` loops. That is:
// i is not recognized here
for (int i=1; i < 10; i++)
{
 // i is recognized here
}
// i is not recognized here

Global variables, which are defined outside of any function (at the top of the file) and are accessible to all functions within that file, seem very convenient. However, in general they are not a good idea. We’ll discuss later how to use classes, in which variables are hidden from the outside on purpose, to create more robust programs that can be modified and reused without fear of introducing subtle (or unsubtle!) bugs.

d. Solving the Schrödinger Equation Numerically

The abstract bound-state, time-independent Schrödinger equation,

\[H\Psi = E\Psi , \]

(5.7)
can be solved in a variety of ways numerically. Here is a laundry list:

1. Solve as a differential equation in coordinate representation (when we have a local potential).

 In one dimension, this means solving the equation:

 \[-\frac{\hbar^2}{2M} \frac{d^2}{dx^2} + V(x) \Psi_n(x) = E_n \Psi_n(x) . \]

 (5.8)

 For a central potential in three dimensions, the potential is purely radial

 \[V(x) = V(|x|) \equiv V(r) , \]

 (5.9)

 and we can use a partial wave decomposition (which means we separate the equation in spherical coordinates). That is, we write

 \[\Psi_{nlm}(x) = \frac{u_{nl}(r)}{r} Y_{lm}(\theta, \phi) , \]

 (5.10)

 where \(Y_{lm} \) is a spherical harmonic, and solve the radial one-dimensional Schrödinger equation:

 \[-\frac{\hbar^2}{2M} \frac{d^2 u_{nl}(r)}{dr^2} + \left[V(r) + \frac{\hbar^2 l(l+1)}{2Mr^2} \right] u_{nl}(r) = E_n u_{nl}(r) \]

 (5.11)

 with

 \[u_{nl}(r = 0) = 0 \quad \text{and} \quad \int_0^\infty |u_{nl}(r)|^2 dr = 1 . \]

 (5.12)

 We’ll be studying differential equations in the near future, at which time we’ll come back to the details of solving Eq. (5.12).
2. **Matrix diagonalization in coordinate representation.** Return to Eq. (5.11) but now replace the second derivative with a finite difference formula:

\[
\frac{d^2 u}{dr^2} = \frac{u(r + h) - 2u(r) + u(r - h)}{h^2} + O(h^2) .
\] (5.13)

Let’s suppose we solve this system knowing the boundary conditions at \(r = 0 \) and \(r = R_{\text{max}} \). We know the former from Eq. (5.12), \(u(0) = 0 \), and we’ll suppose \(R_{\text{max}} \) is large enough so that \(u(R_{\text{max}}) \approx 0 \). We’ll need a labeling system for the points; we’ll follow the one in Ref. [2]:

\[
x_i = i \times h , \quad i = 0, 1, 2, \ldots, N
\] (5.14)

where \(N \) is the number of steps and the step size \(h \) is given by:

\[
h = \frac{R_{\text{max}}}{N} .
\] (5.15)

Thus, \(x_0 = 0, x_1 = h, \) and so on up to \(x_N = R_{\text{max}} \). So we can approximate the Schrödinger equation at point \(x_k \) as

\[
- \frac{h^2}{2M} \left(\frac{u(x_k + h) - 2u(x_k) + u(x_k - h)}{h^2} \right) + V(x_k)u(x_k) = Eu(x_k) .
\] (5.16)

If we work in units where \(h = 1 \) and also \(M = 1/2 \), and if we use the obvious notation:

\[
u_k \equiv u(x_k), \quad u_{k \pm 1} \equiv u(x_k \pm h), \quad V_k \equiv V(x_k) ,
\] (5.17)

then the equation at \(k \) takes the form

\[
- \frac{u_{k+1} - 2u_k + u_{k-1}}{h^2} + V_k u_k = Eu_k .
\] (5.18)

We know two values, \(u_0 = 0 \) and \(u_N = 0 \). We can put the rest, \(u_1 \) to \(u_{N-1} \) in a column vector, which then satisfies a matrix eigenvalue problem:

\[
\begin{pmatrix}
\frac{2}{h^2} + V_1 & -\frac{1}{h^2} & 0 & \cdots & 0 \\
-\frac{1}{h^2} & \frac{2}{h^2} + V_2 & -\frac{1}{h^2} & & \\
0 & -\frac{1}{h^2} & \ddots & \ddots & \\
\vdots & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & -\frac{1}{h^2} & \frac{2}{h^2} + V_{N-1}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3 \\
\vdots \\
u_{N-1}
\end{pmatrix}
= E
\begin{pmatrix}
u_1 \\
u_2 \\
u_3 \\
\vdots \\
u_{N-1}
\end{pmatrix}
\] (5.19)

This is a **tridiagonal** matrix with a simple structure: the only non-zero off-diagonal matrix elements are the ones adjacent to the diagonal, and they all have the same value, \(-1/h^2 \). There are special algorithms that can rapidly find the eigenvalues and eigenvectors of such a matrix.

3. **Introduce a (truncated) orthonormal basis in which to expand** \(u_{nl}(r) \) **and diagonalize the matrix of coefficients.** [Note: we’ll assume \(l = 0 \) from here on, and drop the \(l \) label.] Imagine we have a set of basis functions:

\[
\{\phi_i(r)\} , \quad i = 0, 1, \cdots, D - 1 ,
\] (5.20)
which we’ve truncated at D states (since we can only use a finite number in the computer), although in principle there are an infinite number. Orthonormality means that

\[
\int_0^\infty \phi_i(r)\phi_j(r)\,dr = \delta_{ij} = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } i \neq j.
\end{cases}
\]

(5.21)

We can take the ϕ’s to be real. (Why?) Then the expansion and coefficients are:

\[
u_n(r) \approx \sum_{i=0}^{D-1} C_i^{(n)} \phi_i(r) \implies C_j^{(n)} = \int_0^\infty \phi_j(r)\nu_n(r)\,dr .
\]

(5.22)

(Can you derive the expression for $C_j^{(n)}$?) If we substitute the expansion for $\nu_n(r)$ in the Schrödinger equation (5.11), multiply by $i\phi_i(r)$ and integrate over r,

\[
\sum_{j=0}^{D-1} \int_0^\infty \phi_i(r) \left[-\frac{\hbar^2}{2M} \frac{d^2}{dr^2} + V_{\text{eff}}(r) \right] \phi_j(r)\,dr \cdot C_j^{(n)} = E_n \sum_{j=0}^{D-1} C_j^{(n)} \int_0^\infty \phi_i(r)\phi_j(r)\,dr = E_n C_i^{(n)},
\]

(5.23)

or

\[
\sum_{j=0}^{D-1} H_{ij} C_j^{(n)} = E_n C_i^{(n)}.
\]

(5.24)

This is simply a matrix eigenvalue problem (take the time to make sure you see that this is true!):

\[
\begin{pmatrix}
H_{00} & H_{01} & \cdots & \cdots & H_{0D-1} \\
H_{10} & H_{11} & \cdots & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
H_{D-10} & \cdots & \cdots & \cdots & H_{D-1D-1}
\end{pmatrix}
\begin{pmatrix}
C_0^{(n)} \\
\vdots \\
C_{D-1}^{(n)}
\end{pmatrix}
= E_n
\begin{pmatrix}
C_0^{(n)} \\
\vdots \\
C_{D-1}^{(n)}
\end{pmatrix}
\]

(5.25)

which we can give to a packaged routine (e.g., from GSL or LAPACK).

In Session 5, we’ll use harmonic oscillator radial wave functions as a basis. The potential for these wave functions is

\[
V(r) = \frac{1}{2}M\omega^2r^2 .
\]

(5.26)

We define the oscillator parameter b by

\[
h\omega = \frac{\hbar^2}{Mb^2},
\]

(5.27)

and use units in which $\hbar = 1$. This means that b sets the length scale and $q \equiv r/b$ is the natural dimensionless coordinate. The oscillator state $u_{nl}(r)$ is specified by the radial
quantum number \(n \) and the angular momentum quantum number \(l \) (we’ll be using \(l = 0 \) in class), with normalization

\[
\int_0^\infty dr \, |u_{nl}(r)|^2 = 1.
\] (5.28)

Here are some questions to think about:

- What do the lowest wave functions look like? E.g., how many nodes does the ground state wave function have? The 1st excited state? Sketch the first few.
- At large \(r \), the wavefunctions will fall off like \(e^{-r^2/2b^2} \). If you want to accurately build up the ground state wave function for a square well, how would you choose \(b \) so that you can use the smallest number of terms to get a given accuracy? How about a hydrogen-like wave function?
- The diagonalization of a Hamiltonian in a truncated basis can be view as a variational calculation (we’ll discuss this further in future notes). What are the implications for:
 - What state is determined best?
 - How should the difference from the exact answer change as the basis size is increased?

4. Solve an integral equation in momentum representation. (We’ll come back to this later!).

e. References

[2] M. Hjorth-Jensen, *Computational Physics*. These are notes from a course offered at the University of Oslo. See the 780.20 webpage for links.