12. 780.20 Session 12

a. Follow-ups to Session 11

- **Histograms of Uniform Random Number Distributions.** Here is a typical figure you might get when histogramming uniform distributions using gnuplot (using `plot...with steps` to get the histogram look): Two sets of numbers have an average of 2000 counts per bin and two sets have an average of 500 per bin. The size of the fluctuations should scale as $\sqrt{\#}$ of counts in a bin, which is evident in the figure. That is, the fluctuations of the top sets look roughly twice as large as those of the bottom set and a standard deviation of 40–50 looks about right.

- **The Length of Random Walks.** In Session 11 you explored how the final distance R from the origin of a random walk scales with the number of steps N. Remember that there is no relationship for any individual walk, but only a statistical relationship that arises by averaging R for a given N over many trials. Here is a graph that you might obtain:

 It shows a good fit to the expected \sqrt{N} dependence!
b. Recap of Session 11: Monte Carlo Integration and Lead-in to Session 12

We explored in Session 11 how we could approximate an integral $\int_a^b f(x) \, dx$ by picking a random sequence of N values of x, which we label $\{x_i\}$, distributed uniformly on $[a, b]$.

- That is, the probability of choosing a number between x and $x + dx$ is
 \[P_{\text{uniform}}(x) \, dx = \frac{1}{b - a} \, dx. \]
 \[(12.1) \]

- Note that this PDF (probability distribution function) is normalized, i.e.,
 \[\int_a^b P_{\text{uniform}}(x) \, dx = \frac{1}{b - a} \int_a^b dx = 1, \]
 as you’d expect since the total probability must be unity.

The Monte Carlo expression for the integral arises by approximating the average of $f(x)$ in $[a, b]$:
\[\langle f \rangle = \frac{1}{b - a} \int_a^b f(x) \, dx \approx \frac{1}{N} \sum_i f(x_i). \]
\[(12.3) \]

We can write this as
\[\int_a^b f(x) P_{\text{uniform}}(x) \, dx \approx \frac{1}{N} \sum_i f(x_i). \]
\[(12.4) \]
You should have found that the accuracy of the integral improved statistically with the number of points. Here is a graph showing the results of 16 trials for each value of N:

![Graph showing Monte Carlo Integration results](image)

The expected behavior is revealed by the fit (error improves like $1/\sqrt{N}$), but with large fluctuations. We should average over many more trials if we want a cleaner demonstration!

Now what if we used a different probability distribution $P(x)$? Then if our N values of x, which we’ll label $\{\tilde{x}_i\}$, are distributed according to $P(x)$, the average of the $f(\tilde{x}_i)$’s yields an approximation to the integral over $f(x)P(x)$:

$$\frac{1}{N} \sum_i f(\tilde{x}_i) \approx \int_a^b f(x) P(x) \, dx .$$ (12.5)

This means that we can always divide a given integrand into a part that we treat as a probability distribution (called $P(x)$ here) and the rest (which is called $f(x)$ here).

- If we choose $P(x)$ so that $f(x)$ varies only relatively slowly with x, we will get an accurate estimate of the integral.
- This is called “importance sampling”.
- The generalization to many dimensions is immediate: we simply replace one-dimensional x by a multi-dimensional vector \mathbf{x} everywhere.

In Session 11 we saw that GSL can generate random numbers according to various one-dimensional PDF’s, such as uniform and gaussian distributions. But the multi-dimensional integrals we’ll want
to do for physical problems will generally have a nonstandard $P(x)$. We will use the Metropolis algorithm to generate an appropriate distribution of \tilde{x}_i's.

c. Thermodynamic Properties of the Ising Model

If we want to calculate the thermodynamic properties of a system at temperature T (that is, in equilibrium) that has a Hamiltonian $\mathcal{H}(x)$, we have the problem of calculating a high dimensional integral with a rapidly varying integrand.

- Here “$\mathcal{H}(x)$” is the energy of the system for a given configuration x. A configuration is a specification of the state of the system in some relevant variables.
- For a quantum mechanical system of N spinless particles, a configuration could be the N position vectors.
- For a system of spins on a lattice, a configuration could be a specification of the spin projection at each lattice point.

We’ll use the Ising model in one and two dimensions as our first example. The system consists of a set of lattice sites with spins, which take on only two possible values, $+1$ or -1. The spins are arranged in a chain (one-dimensional Ising model) or a square lattice (two-dimensional Ising model). The interaction between spins is short-ranged, which is represented in our model by interactions only between nearest neighbors. That is, there is potential energy only from adjacent spins. Each spin has two nearest neighbors in one dimension and four nearest neighbors in two dimensions (diagonals don’t count here!).

- We have to specify what happens at the edge of the system. E.g., do the ends of the one-dimensional chain have only one nearest neighbor, or do we imagine the chain wrapped into a continuous band? In the latter case, we have periodic boundary conditions, because it is equivalent to imagining an infinite chain that repeats itself periodically.

We also allow for an external constant magnetic field, H, which interacts with each of the spins individually to contribute a Zeeman energy.

We choose units so that the Hamiltonian takes the simple form:

$$\mathcal{H}(x) = -J \sum_{(i,j)} S_i S_j - \sum_i H S_i ,$$

where $S_i = \pm 1$ is the spin.

- Here x is just a shorthand for a specification of the spin S_i on each site. For a one-dimensional Ising model with N sites, you could store this as an array of length N with each element either $+1$ or -1.
- The notation $\langle i, j \rangle$ stands for “nearest neighbor” pairs of spins. Obviously the product $S_i S_j$ can be either $+1$ or -1.

• In many applications we'll set the external field H to zero.

• The constant J (called the “exchange energy”) specifies the strength of the spin-spin interaction. For a ferromagnetic interaction, $J > 0$, while for an “anti-ferromagnetic interaction” $J < 0$. What do you think is the physical origin of J for a ferromagnetic interaction?

• The magnetization of the system is the average value of the spin, $\langle S_i \rangle$, where the average is taken over the entire lattice. If the spins are equally likely to be up (+1) as down (−1), then the net magnetization is zero. In an external magnetic field, up or down will be favored energetically (if $H > 0$ in $H(x)$ above, which is favored?), and there will generally be a net magnetization. In a ferromagnet at sufficiently low temperature, there will be spontaneous magnetization even in the absence of an external field. This may occur over regions (“domains”) or over the entire lattice.

A configuration in the Ising model is a microstate of the system. If we have N sites in a one-dimensional Ising model, how many possible configurations (or microstates) are there? How many different values of the energy (with $H = 0$)?

The thermal average of a quantity A that depends on the configuration x (examples of A are the energy per degree of freedom $E = (\mathcal{H}_T)/N$ or the magnetization per degree of freedom $M = (\sum_i S_i)/N$) is given by the canonical ensemble (the denominator is the partition function Z)

$$\langle A(x) \rangle_T = \frac{\int d\mathbf{x} A(\mathbf{x}) e^{-\mathcal{H}(\mathbf{x})/kT}}{\int d\mathbf{x}' e^{-\mathcal{H}(\mathbf{x}')/kT}} = \int d\mathbf{x} A(\mathbf{x}) P_{\text{eq}}(\mathcal{H}(\mathbf{x})) ,$$

where we have pulled out the Boltzmann factors to identify the probability distribution function $P_{\text{eq}}(\mathcal{H}(\mathbf{x}))$:

$$P_{\text{eq}}(\mathcal{H}(\mathbf{x})) = \frac{e^{-\mathcal{H}(\mathbf{x})/kT}}{\int d\mathbf{x}' e^{-\mathcal{H}(\mathbf{x}')/kT}} .$$

(Is this PDF normalized?) In the Ising model example, the integration over x is just a sum over the spin configurations. If our configurations are chosen as eigenstates of energy (which they are in the Ising model example), then we can just sum over energies rather than every configuration:

$$\langle A \rangle_T = \frac{\sum_E (\# \text{ of states with energy } E) A(E) e^{-E/kT}}{\sum_{E'} (\# \text{ of states with energy } E') e^{-E'/kT}} = \sum_E A(E) P(E) .$$

If we can construct a set of N configurations $\{\tilde{x}_i\}$ (a statistical sample) that are distributed according to P, then we can apply our Monte Carlo method (i.e., we will be doing importance sampling) and $\langle A \rangle_T = (1/N) \sum_i A(\tilde{x}_i)$. This is what the Metropolis algorithm does for us!

d. Metropolis Algorithm

The first thing to get straight is that the Metropolis algorithm has nothing to do with Superman or Fritz Lang :). It is named for the first author on the paper that described the algorithm. (A bit of
trivia: another author on the paper is Edward Teller.) The Metropolis algorithm generates a Markov chain; this is a sequence of configurations x_i that will be distributed according to the canonical distribution (i.e., the Boltzmann factor will tell us the relative probability of any configuration).

The Markov process constructs state x_{l+1} from the previous state x_l according to a transition probability $W(x_l \rightarrow x_{l+1})$. The idea is to construct W such that in the limit of a large number of configurations, the distribution of states x_i approaches the equilibrium Boltzmann distribution P_{eq} from Eq. (12.8).

A sufficient condition for this to happen is that the principle of detailed balance should hold. In equilibrium, the rate of $x \rightarrow x'$ should equal the rate of $x' \rightarrow x$, or else it is not equilibrium! In calculating these rates, there are two terms to multiply:

$$\left(\frac{\text{probability}}{\text{time}} \text{of } x \rightarrow x' \right) \times (\# \text{ of } x's) = \left(\frac{\text{probability}}{\text{time}} \text{of } x' \rightarrow x \right) \times (\# \text{ of } x''s) \quad (12.10)$$

or

$$W(x \rightarrow x') \times N P_{eq}(x) = W(x' \rightarrow x) \times N P_{eq}(x'), \quad (12.11)$$

which is detailed balance. This means that

$$\frac{W(x \rightarrow x')}{W(x' \rightarrow x)} = \frac{P_{eq}(x)}{P_{eq}(x')} \quad (12.12)$$

But we know that

$$P_{eq}(x) = \frac{1}{Z} e^{-\mathcal{H}(x)/kT}. \quad (12.13)$$

Any choice of W satisfying Eq. (12.12) should work, in principle.

For example, we can take

$$W(x \rightarrow x') = \begin{cases} \frac{1}{\tau_s} e^{-\delta E/kT} & \text{if } \delta E > 0 \\ \frac{1}{\tau_s} & \text{if } \delta E \leq 0 \end{cases} \quad (12.14)$$

with τ_s arbitrary for now (set it equal to unity for convenience) and where

$$\delta E \equiv E_{x'} - E_x. \quad (12.15)$$

We can check that it works by considering all possible outcomes, as shown in this chart:

<table>
<thead>
<tr>
<th>$E_{x'}$</th>
<th>δE</th>
<th>$W(x \rightarrow x')$</th>
<th>$e^{-E_x/kT}$</th>
<th>δE</th>
<th>$W(x' \rightarrow x)$</th>
<th>$e^{-E_{x'}/kT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x</td>
<td>> 0</td>
<td>$\frac{1}{\tau_s} e^{-\delta E/kT}$</td>
<td>$e^{-E_x/kT}$</td>
<td>< 0</td>
<td>$\frac{1}{\tau_s} e^{-\delta E/kT}$</td>
<td>$e^{-E_{x'}/kT}$</td>
</tr>
<tr>
<td>E_x'</td>
<td>< 0</td>
<td>$\frac{1}{\tau_s} e^{-\delta E/kT}$</td>
<td>$e^{-E_x/kT}$</td>
<td>> 0</td>
<td>$\frac{1}{\tau_s} e^{-\delta E/kT}$</td>
<td>$e^{-E_{x'}/kT}$</td>
</tr>
</tbody>
</table>

If you do the multiplications, you’ll see that detailed balance is satisfied in every case.

Section 2.2 of the Binder/Heerman excerpt describes an implementation of Metropolis for the Ising model. The basic idea is that from a starting configuration, one generates a candidate for a new configuration somehow (for example, by flipping one randomly selected spin). After calculating
the energy change between new and old, one has the transition probability W from Eq. \textcircled{12.14}. Generate a random number between 0 and 1; if the number is less than $\tau_s W$ keep the new configuration but otherwise flip the spin back and keep this as the “new” configuration.

We’ll go over various implementation issues in this Session and the next. These include:

- **Equilibration.** If we are going to use configurations generated by Metropolis to calculate thermal averages, we want to make sure we have reached “equilibrium.” How long does this take and what is the signature?

- **Efficiency.** The initial two-dimensional Ising model code has several inefficiencies that are generic to many types of Monte Carlo simulations. In Session 12 we’ll look at how to optimize to gain a factor of six in speed.

- **Autocorrelation.** When evaluating an average over Monte Carlo configurations, we want to skip the first n_1 steps and then use data taken every n_0 Monte Carlo steps. How do we determine how large to take n_0 and n_1? The autocorrelation function (Session 13) can be used to determine a reasonable choice for n_0.

\section*{e. References}

[2] M. Hjorth-Jensen, *Computational Physics*. These are notes from a course offered at the University of Oslo. See the 780.20 webpage for links.