Contents

1 Introduction to Numerical Methods in Physics 1

1 Introduction 3
1.1 Choice of programming language 5
1.2 Designing programs 6

2 Introduction to C++ and Fortran 90/95 9
2.1 Getting started 9
2.1.1 Representation of integer numbers 14
2.2 Real numbers and numerical precision 18
2.2.1 Representation of real numbers 19
2.2.2 Further examples 27
2.3 Loss of precision 30
2.3.1 Machine numbers 30
2.4 Additional features of C++ and Fortran 90/95 31
2.4.1 Operators in C++ 31
2.4.2 Pointers and arrays in C++ 33
2.4.3 Macros in C++ 35
2.4.4 Structures in C++ and TYPE in Fortran 90/95 36

3 Numerical differentiation 39
3.1 Introduction 39
3.2 Numerical differentiation 39
3.2.1 The second derivative of e^x 43
3.2.2 Error analysis 53
3.3 How to make figures with Gnuplot 55

4 Linear algebra 59
4.1 Introduction 59
4.2 Mathematical intermezzo 60
4.3 Programming details 64
4.3.1 Declaration of fixed-sized vectors and matrices 65
4.3.2 Runtime declarations of vectors and matrices in C++ 65
4.4 Linear Systems 74
4.4.1 Gaussian elimination 76
4.4.2 LU decomposition of a matrix 79

4.4.3 Solution of linear systems of equations 84
4.4.4 Inverse of a matrix and the determinant 85
4.4.5 Tridiagonal systems of linear equations 90
4.5 Singular value decomposition 92
4.6 QR decomposition 92
4.7 Handling sparse matrices 92
4.8 Classes, templates and Blitz++ 92
4.8.1 The Complex class 94
4.9 Single-value decomposition 102
4.10 QR decomposition 102
4.11 Physics project, the one-dimensional Poisson equation 102
4.11.1 Solution to exercise c) 105

5 Non-linear equations and roots of polynomials 109
5.1 Introduction 109
5.2 Iteration methods 110
5.3 Bisection method 112
5.4 Newton-Raphson’s method 113
5.5 The secant method and other methods 116
5.5.1 Calling the various functions 118

6 Numerical interpolation, extrapolation and fitting of data 119
6.1 Introduction 119
6.2 Interpolation and extrapolation 119
6.2.1 Polynomial interpolation and extrapolation 119
6.3 Richardson’s deferred extrapolation method 122
6.4 Cubic spline interpolation 123

7 Numerical integration 127
7.1 Introduction 127
7.2 Newton-Cotes quadrature: equal step methods 127
7.2.1 Romberg integration 133
7.3 Gaussian quadrature 133
7.3.1 Orthogonal polynomials, Legendre 137
7.3.2 Mesh points and weights with orthogonal polynomials 142
7.3.3 Application to the case $N = 2$ 140
7.3.4 General integration intervals for Gauss-Legendre 142
7.3.5 Other orthogonal polynomials 142
7.3.6 Applications to selected integrals 144
7.4 Treatment of singular Integrals 146
7.5 Adaptive quadrature methods 148
7.6 Multi-dimensional integrals 148
7.7 Parallel computing 149
7.7.1 Brief survey of supercomputing concepts and terminologies 149
7.7.2 Parallelism 150
7.7.3 MPI with simple examples 152
7.7.4 Numerical integration with MPI 157
13 Differential equations 323
 13.1 Introduction .. 323
 13.2 Ordinary differential equations 324
 13.3 Finite difference methods 325
 13.3.1 Improvements to Euler’s algorithm, higher order methods 327
 13.3.2 Predictor-Corrector methods 328
 13.4 More on finite difference methods, Runge-Kutta methods 329
 13.5 Adaptive Runge-Kutta and multistep methods 331
 13.6 Physics examples 332
 13.6.1 Ideal harmonic oscillations 332
 13.6.2 Damping of harmonic oscillations and external forces 337
 13.6.3 The pendulum, a nonlinear differential equation 339
 13.6.4 Spinning magnet 341
 13.7 Physics Project: the pendulum 342
 13.7.1 Analytic results for the pendulum 342
 13.7.2 The pendulum code 345
 13.8 Physics Project: studies of neutron stars 350
 13.8.1 The equations for a neutron star 351
 13.8.2 Equilibrium equations 351
 13.8.3 Dimensionless equations 352
 13.9 Physics project: studies of white dwarf stars 355
 13.9.1 Equilibrium equations 356
 13.9.2 Dimensionless form of the differential equations 359
 13.10 Physics project: Period doubling and chaos 360
 14 Two point boundary value problems 363
 14.1 Introduction 363
 14.2 Shooting methods 364
 14.2.1 Improved approximation to the second derivative, Numerov’s method 364
 14.2.2 Wave equation with constant acceleration 366
 14.2.3 Schrödinger equation for spherical potentials 370
 14.3 Numerical procedure, shooting and matching 371
 14.3.1 Algorithm for solving Schrödinger’s equation 372
 14.4 Physics projects 374
 15 Partial differential equations 377
 15.1 Introduction 377
 15.2 Diffusion equation 379
 15.2.1 Explicit scheme 380
 15.2.2 Implicit scheme 384
 15.2.3 Crank-Nicolson scheme 387
 15.2.4 Numerical truncation 388
 15.2.5 Analytic solution for the one-dimensional diffusion equation 389
 15.3 Laplace’s and Poisson’s equations 391
 15.3.1 Jacobi Algorithm for solving Laplace’s equation 393
 15.3.2 Laplace’s equation and the parallel Jacobi algorithm 394
 15.3.3 Relaxation methods for boundary value problems with parallel implementation 394
 15.4 Wave equation in two dimensions 394
 15.4.1 Analytic solution 396
 15.5 The Leap frog method and Schrödinger’s equation 397
 15.6 Physics projects, two-dimensional wave equation 398
 15.7 Physics projects, one- and two-dimensional diffusion equations 398
 II Advanced topics 401
 16 Finite element method 403
 17 Modelling Phase Transitions in Statistical Physics 405
 18 Quantum Monte Carlo and Bose-Einstein condensation 407
 19 Quantum Monte Carlo for atoms and molecules 409
 20 Large-scale diagonalization and Coupled-Cluster theories 411
 21 Quantum Information Theory and Quantum Algorithms 413
III Programs and additional notes on C++, MPI and Fortran 90/95 415
 A Additional C++ and Fortran 90/95 programming features 417
 A.1 The vector class 417
 A.2 Modules in Fortran 90/95 422
 A.3 Debugging of codes 427
 A.4 MPI functions and examples 428
 A.5 Special functions used in the natural sciences 428