Physics 828: Problem Set 2

Dr. Stroud

Due Wednesday, January 23 at 11:59:59 P. M.

Each problem is worth 10 points unless otherwise specified.

1. Some properties of the Pauli spin matrices.

2. Shankar, exercise 14.3.2.

4. (20 pts.) Consider a spin 1/2 particle. Call its spin S, its orbital angular momentum L, and its state vector $|\psi\rangle$. The two functions $\psi_{\pm}(r)$ are defined by $\psi_{\pm}(r) = \langle r, \pm | \psi \rangle$. (These are the two components of the spinor wave function discussed in class.) Assume that

$$\psi_{+}(r) = R(r) \left[Y_{0}^{0}(\theta, \phi) + \frac{1}{\sqrt{3}} Y_{1}^{0}(\theta, \phi) \right]$$
$$\psi_{-}(r) = R(r) \frac{1}{\sqrt{3}} \left[Y_{1}^{1}(\theta, \phi) - Y_{0}^{1}(\theta, \phi) \right]$$

(1)

where r, θ, and ϕ are the coordinates of the particle and $R(r)$ is a given function of r.

(a). What condition must $R(r)$ satisfy in order for $|\psi\rangle$ to be normalized?
(b). S_z is measured with the particle in state $|\psi\rangle$. What results can be found and with what probabilities? Same question for L_z and then for S_x.
(c). A measurement of L^2 with the particle in state $|\psi\rangle$ yielded zero. What state describes the particle just after this measurement?