There are a "hot reservoir" and a "cold reservoir".

A B: expand isothermally (drawing heat from hot reservoir)

B C: expand adiabatically (and cool)

C D: contract isothermally (returning heat to cold reservoir)

D A: cycle contract adiabatically.

Leg AB: Heat extracted from Th: \(T_h(\delta B - \delta A) = \Delta Q_h \)

BC: No heat gained or lost

CD: Heat returned to Tc: \(T_c(\delta B - \delta A) \)

DA: No heat gained or lost

Hence, work done on some external system is

\(\Delta W = (T_h - T_c)(\delta B - \delta A) = \left(1 - \frac{T_c}{T_h}\right)\Delta Q_h \)

So cannot cycle produces optimal (thermodynamic) efficiency.

Example: let gas be N moles of monatomic ideal gas
Example: monotonic ideal gas: calculate ΔQ, ΔW in each leg of cycle:

Solution: we have

\[U = \frac{3}{2} NRT \]
\[S = N \sigma_0 + \frac{3}{2} N R \ln \left(\frac{T}{T_0} \right) + N R \ln \left(\frac{V}{NV_0} \right) \]

Step AB:
\[\Delta S_{AB} = S_B - S_A = N R \ln \left(\frac{V_B}{V_A} \right) \]
\[\Delta Q_{AB} = N R T_h \ln \left(\frac{V_B}{V_A} \right) \]
\[\Delta U_{AB} = 0 \]
\[\Delta W_{AB} = \text{work done on gas} \]
\[= -N R T_h \ln \left(\frac{V_B}{V_A} \right) \quad \text{(so gas does work on RWS)} \]

Step BC
\[\Delta S_{BC} = 0 \]
\[\Delta Q_{BC} = 0 \]
\[\Delta U_{BC} = \frac{3}{2} N R (T_c - T_h) = \frac{2}{3} N R \Delta W_{BC} = \text{work done on gas} \]

Also, V_c is determined by
\[\Delta S_{BC} = 0 = \frac{3}{2} N R \ln \left(\frac{T_c}{T_h} \right) + N R \ln \frac{V_c}{V_B} \]
\[\text{or} \quad V_c = V_B \left(\frac{T_h}{T_c} \right)^{\frac{3}{2}} \]
Step CD:

\[\Delta S_{CD} = NR \ln \frac{V_D}{V_C} \]

But \(V_D = V_A \left(\frac{T_h}{T_c} \right)^{\frac{3}{2}} \) so

\[\Delta S_{CD} = NR \ln \left\{ \frac{V_A}{V_B} \right\} = -\Delta S_{AB} \]

\[\Delta Q_{CD} = NRT_c \ln \left(\frac{V_A}{V_B} \right) \]

\[\Delta U_{CD} = 0 \]

\[\Delta W_{CD} = -NRT_c \ln \left(\frac{V_A}{V_B} \right) \]

Step DA

\[\Delta Q_{DA} = 0 \]

\[\Delta U_{DA} = \frac{3}{2} NR \left(T_c - T_c \right) = \Delta W_{DA} \]

\[\Delta W_{\text{tot}} = \Delta W_{AB} + \Delta W_{BC} + \Delta W_{CD} + \Delta W_{DA} = -NR \left(T_c - T_c \right) \ln \left(\frac{V_B}{V_A} \right) \]

\[\epsilon = -\frac{\Delta W_{\text{tot}}}{\Delta Q_{AB}} = \left(1 - \frac{T_c}{T_h} \right) = \text{fraction of heat energy not in hot reservoir converted to work} \]

Measurement of \(T \):

(i) ratio measured by measuring Carnot efficiency (which gives \(1 - T_c/T_h \))

(ii) let \(T \) of triple pt. of \(H_2O \) be defined as \(273.16 \text{ K} \)

Measurement of entropy: (later)
\[S(T, P) = S(T_0, P_0) + \int_{T_0, P_0}^{T, P} \left[\frac{\partial S}{\partial T} \right]_P dT + \left[\frac{\partial S}{\partial P} \right]_T dP \]

(\(\mathcal{C} = \) some specific path)

\[\left(\frac{\partial S}{\partial T} \right)_P = \sqrt{NCP} \text{ as already shown} \]

By various derivative identities to be proved later, this becomes

\[S(T, P) = S(T_0, P_0) + \int (\mathcal{C}) \left[-\left(\frac{\partial P}{\partial T} \right)_S dT + dP \right] \]

Since everything in integrand is measurable, so are entropy differences. Hence, with addition of

Nernst postulate, so is entropy itself.

Some other cyclic processes:

1. Otto cycle:

 \[\epsilon = \frac{(C_p - C_v)}{C_v} \]

 \[\epsilon = 1 - \frac{V_B}{V_A} \]
Brayton - Joule cycle:

\[P_A \rightarrow C \rightarrow P \rightarrow B \rightarrow P_A \]

For ideal gas: \[\eta = 1 - \left(\frac{P_A}{P_B} \right) \]

Air-standard diesel cycle:

\[P_C \rightarrow B \rightarrow C \rightarrow S = S_C \]

\[V \rightarrow A \rightarrow B \rightarrow C \rightarrow S = S_A \]

Efficiency may not have simple expression
Alternative Formulations, Legendre Transformations

Original statement:
Entropy max. for given energy:
\[\Rightarrow \text{Energy minimum for given entropy (in isolated system)} \]

Proof: Let \(S = \text{max. max.} \)
Suppose \(U \) is not min. for given \(S \)

Then could take energy out into RWS
(thereby lowering \(U \) without changing \(S \))
then add it back in form of heat
thereby increasing \(S \) for same \(U \),
contradicting max-entropy hypothesis

Conclusion: \(U \) is min. for given \(S \):

Example: diatomic wall
isolated

\[
\begin{array}{c|c|c|c}
\text{Well} & \text{Isolated} \\
\hline
U^W & S^{(1)} & V^{(1)} & N_i^{(1)} \\
S_i^{(1)} & V_i^{(1)} & N_i^{(2)} & N_i^{(2)} \\
\end{array}
\]

\[
U = U^{(1)}(S^{(1)}, V^{(1)}, N_i^{(1)}) + U^{(2)}(S^{(2)}, V^{(2)}, N_i^{(2)})
\]

\[
dU = T^{(1)}dS^{(1)} - p^{(1)}dV^{(1)} + \sum \mu_i dN_i^{(1)}
+ T^{(2)}dS^{(2)} - p^{(2)}dV^{(2)} + \sum \mu_i dN_i^{(2)} = 0
\]

Also, at fixed entropy, \(dS^{(1)} = -dS^{(2)} \)
so \(dU = 0 = (T^{(1)} - T^{(2)})dS^{(1)} = 0 \)

\[
\Rightarrow T^{(1)} = T^{(2)}
\]
Alternative potentials:

\[F = U - TS \quad \text{Helmholtz free energy} \]
\[H_0 = U + PV \quad \text{enthalpy} \]
\[G = U - TS + PV \quad \text{Gibbs free energy} \]

\[dU = TdS - PdV + \sum \mu_i dN_i \]
\[dF = dU - TDs - TdS = -dS - PdV + \sum \mu_i dN_i \]

\[\delta = F(T, V, N) \]

\[S = -\left(\frac{\partial F}{\partial T} \right)_{V, \sum \mu_i N_i} \]
\[P = -\left(\frac{\partial F}{\partial V} \right)_{T, \sum \mu_i N_i} \]

\[\mu_i = \left(\frac{\partial F}{\partial N_i} \right)_{T, V, \sum \mu_j N_j} \]

Similarly,

\[dH = dU + PdV + VdP \]
\[= TdS + VdP + \sum \mu_i dN_i \]

\[\Rightarrow H = H(S, P, \sum \mu_i N_i) \]

\[T \delta = \left(\frac{\partial H}{\partial S} \right)_{P, \sum \mu_i N_i} \quad V = \left(\frac{\partial H}{\partial P} \right)_{S, \sum \mu_i N_i} \]

\[\mu_i = \left(\frac{\partial H}{\partial N_i} \right)_{S, P, \sum \mu_j N_j} \]
Finally,

\[dG = dU - TdS - SdT + PdV + VdP \]

\[= -SdT + VdP + \sum \mu_i dN_i \]

\[S = -\left(\frac{\partial G}{\partial T} \right)_{V, N_i} ; \quad V = \left(\frac{\partial G}{\partial P} \right)_{T, N_i} ; \]

\[\mu_i = \left(\frac{\partial G}{\partial N_i} \right)_{T, P, N_j} . \]
Example: ideal gas in Helmholtz representation:

\[S = N s_0 + c N R \ln \left(\frac{U}{N u_0} \right) + N R \ln \left(\frac{V}{N v_0} \right) \]

also \(U = c N R T \)

\[\Rightarrow S = N s_0 + c N R \ln \left(\frac{T}{T_0} \right) + N R \ln \left(\frac{V}{N v_0} \right) \]

\[c R T_0 = x s N R n_0 \]

\[F = U - TS \]

\[= c N R T - N T s_0 - c N R T \ln \left(\frac{T}{T_0} \right) - N R \ln \left(\frac{V}{N v_0} \right) \]

\[= F(T, V, N) \]

Eq. of state:

\[P = -\left(\frac{\partial F}{\partial V} \right)_{N, T} = \frac{N R T}{V} \] as known already

\[S = -\left(\frac{\partial F}{\partial T} \right)_{V} = -c N R + N s_0 + c N R \ln \left(\frac{T}{T_0} \right) + c N R + N R \ln \left(\frac{V}{N v_0} \right) \] as before.

So this procedure works!
Also, \[U = F + TS \]
\[= cNRT - NTs_0 - cNRT\ln\frac{T}{T_0} - NRT\ln\left(\frac{V}{N\bar{V}_0}\right) \]
\[+ NTs_0 + cNRT\ln\frac{T}{T_0} + NRT\ln\left(\frac{V}{N\bar{V}_0}\right) \]
\[= cNRT \]

Eliminate \(T \) to get \(S(N, U, V) \) as before, so we have recovered the original fundamental relation.
Another example: we are given

\[
U = \frac{3}{2} PV
\]

\[
NP = AVT^4
\]

Fundamental eq.:

\[
p = \frac{2}{3} \frac{U}{V}
\]

\[
T = \sqrt{\frac{NP}{AV}}
\]

\[
T^4 = \frac{NP}{AV} = \frac{N}{AV} \frac{2}{3} \frac{U}{V} = \frac{2}{3} \frac{NU}{AV^2}
\]

\[
T = \left(\frac{2}{3}\right)^{\frac{1}{4}} \left(\frac{NU}{AV^2}\right)^{\frac{1}{4}}
\]

\[
\frac{1}{T} = \left(\frac{3}{2}\right)^{\frac{1}{4}} \left(\frac{AV^2}{NU}\right)^{\frac{1}{4}}
\]

\[
\text{FDS} = dU = TdS - PdV + \mu dN
\]

\[
ds = dU + PdV - \frac{\mu}{N} dN
\]

\[
\left(\frac{\partial S}{\partial U}\right) = \left(\frac{3}{2}\right)^{\frac{1}{4}} \left(\frac{AV^2}{NU}\right)^{\frac{1}{4}} = \left(\frac{3}{2}\right)^{\frac{1}{4}} \left(\frac{AV}{N}\right)^{\frac{1}{4}} U^{\frac{1}{4}}
\]

\[
S = \frac{4}{3} \left(\frac{3}{2}\right)^{\frac{1}{4}} \left(\frac{AV^2}{N}\right)^{\frac{1}{4}} U^{\frac{3}{4}} + f(V, N)
\]
\[S = \frac{4}{3} \left(\frac{3}{2} \right)^{\frac{1}{4}} \left(\frac{AV^2}{N} \right)^{\frac{1}{4}} U^{\frac{3}{4}} + f(V, N) \]

\[\frac{P}{T} = \frac{2}{3} \left(\frac{3}{2} \right)^{\frac{1}{4}} \left(\frac{AV^2}{NU} \right)^{\frac{1}{4}} \frac{U}{V} = \frac{2}{3} \left(\frac{3}{2} \right)^{\frac{1}{4}} A^{\frac{1}{4}} U^{\frac{3}{4}} V^{-\frac{1}{4}} N^{-\frac{1}{4}} \]

\[S = \frac{4}{3} \left(\frac{3}{2} \right)^{\frac{1}{4}} A^{\frac{1}{4}} U^{\frac{3}{4}} V^{\frac{1}{2}} N^{-\frac{1}{4}} + g(U, N) \]

\[\Rightarrow S = \text{const} + NK \]

Get rid of \(U \) in favor of \(T \):

\[U = \frac{3}{2} PV \]

\[P = \frac{AVT^4}{N} \]

So

\[U = \frac{3}{2} A \frac{V^2}{N} T^4 \]

\[S = \frac{4}{3} \left(\frac{3}{2} \right)^{\frac{1}{4}} A^{\frac{1}{4}} V^{\frac{1}{2}} N^{-\frac{1}{4}} \left(\frac{3}{2} \right)^{\frac{3}{4}} A^{\frac{3}{4}} \left(\frac{V^2}{N} \right)^{\frac{3}{4}} T^3 + NK \]

\[= \frac{4}{3} \left(\frac{3}{2} \right) A \frac{V^2}{N} T^3 = 2 A \frac{V^2}{N} T^3 \]

\[U - TS = - A \frac{V^2}{N} T^4 \]
Extremum principle for Helmholtz free energy

\[S + S_r = \text{const} \]

\[U + U_r = \text{min}. \]

So, the system chooses to change \(U \) so that \(\Delta U + \Delta U_r = \text{minimum} \),

where \(\Delta U = \text{change in energy from some ref. initial state} \)

\[\Delta U_r = T_r \Delta S_r = -T_r \Delta S \]

So \(\Delta U - T_r \Delta S = \text{min} \)

or \[\Delta F = \text{min} = F - F_{\text{ref.}} \]

or \(F \) is minimized relative to possible states at fixed temp. \(T, V, N \)

Helmholtz min. ppl.

Similarly \(G = U - TS + PV \) is min. at fixed \((T, P, N) \)