Period 2 Activity Sheet: Forms of Energy

2.1 How are Forms of Energy Defined?
Your instructor will discuss the forms of energy that we will study in the World of Energy. Write a brief description of the forms of energy listed below.

a) Mechanical Energy of Motion
 Energy exhibited by objects in motion

b) Thermal Energy
 Unorganized energy of motion exhibited by vibrations of atoms and molecules

c) Sound Energy
 Organized energy of motion exhibited by vibrations of atoms and molecules

d) Electrical Energy
 Energy resulting from the forces between charged particles

e) Magnetic Energy
 Energy resulting from the forces between magnets, causing the magnets to attract or repel

f) Radiant Energy
 Energy resulting from the vibrations of charges, such as radio waves, microwaves, light rays, and X-rays

g) Gravitational Potential Energy
 Energy stored in raised objects, which have the potential to fall.

h) Strain Potential Energy
 Energy stored in stretched or compressed objects, such as springs.

i) Electrical Potential Energy
 Energy stored in static (not moving) electric charges

j) Chemical Potential Energy
 Energy available in the chemical bonds between atoms or molecules

k) Nuclear Energy
 Energy available in the nucleus of atoms that can decay.
2.2 What Happens When Energy Is Converted from One Form to Another?

a) Observe the demonstration of an exercise bicycle connected to large light bulbs. List the energy conversions that occur when the bulbs light.

chemical potential energy \rightarrow mechanical energy of motion \rightarrow electrical energy, thermal energy, and sound energy \rightarrow radiant energy

b) Connect the hand-cranked generator to the solar cell. Shine the flood light onto the solar cell. List the energy conversions that take place.

electrical energy \rightarrow radiant energy \rightarrow electrical energy \rightarrow mechanical energy of motion, thermal energy, and sound energy

c) Observe the demonstration of the toy train. List the energy conversions that occur when the train goes uphill.

electrical energy \rightarrow mechanical energy of motion, thermal energy, and sound energy \rightarrow gravitational potential energy

List the energy conversions when the train coasts downhill.

gravitational potential energy \rightarrow mechanical energy of motion, thermal energy, and sound energy

d) Arrange two square magnets on the wooden stick so that one magnet floats above the other. Press the floating magnet down and then release it. List the energy conversions that occur.

While pressing down the magnet: chemical potential energy (from your body) \rightarrow mechanical energy of motion \rightarrow magnetic potential energy

When the magnet is released: magnetic energy \rightarrow mechanical energy of motion \rightarrow gravitational potential energy

e) Your instructor will explain the electric drill activity. List the energy conversions that occur.

electrical energy \rightarrow mechanical energy of motion of the drill \rightarrow thermal energy (water heats and turns to steam) \rightarrow mechanical energy of motion (cork pops off)

f) Your instructor will demonstrate devices that illustrate energy conversions. Identify the energy conversions of these devices and list them under the correct heading below. Notice that many devices involve more than one energy conversion.

1) Chemical Energy \rightarrow Electrical Energy
 batteries

2) Chemical Energy \rightarrow Radiant Energy
 chemiluminescence

3) Chemical Energy \rightarrow Thermal Energy
 burning any substance
4) Electrical Energy ➔ Mechanical Energy of Motion
toy train engine, any electric motor

5) Electrical Energy ➔ Radiant Energy
light bulb (visible light and infrared radiation)

6) Electrical Energy ➔ Thermal Energy
toaster, hair dryer, any electrical device

7) Mechanical Energy of Motion ➔ Electrical Energy
hand-cranked generator, electric generating plant

8) Mechanical Energy ➔ Radiant Energy
spark generator

9) Mechanical Energy of Motion ➔ Thermal Energy
friction

10) Nuclear Energy ➔ Electrical Energy
smoke detector

11) Radiant Energy ➔ Chemical Energy
photosynthesis

12) Radiant Energy ➔ Electrical Energy
solar cell

13) Thermal Energy ➔ Mechanical Energy of Motion
bimetallic strips

14) Thermal Energy ➔ Radiant Energy
lantern mantle

g) List devices that store the forms of energy listed below.
1) Gravitational Potential Energy any raised object with the potential to fall

2) Strain Potential Energy a wound spring

3) Chemical Potential Energy a battery

4) Electrical Potential Energy a capacitor

5) Thermal Energy a hot water tank
2.3 How Efficient are Energy Conversions?

a) Connect a small light bulb to a solar cell. Describe what happens when you shine the large flood light onto the solar cell.

The small bulb lights.

(Next, you will try to light the small bulb by shining another small bulb onto the solar cell. But before you try this activity, make a prediction of what you think will happen when the small bulb shines on the solar cell. Making predictions can help you learn physics by identifying your ideas about how the world works, as well as make the course more interesting. An incorrect prediction does not hurt your grade.)

Predict whether the small light bulb will light when another small bulb shines on the solar cell. Then try the activity and write the outcome in the answer blank.

Will the small bulb light? Prediction: _____________ Answer: _____________

1) Explain why the small bulb did or did not light when a small bulb shines on the solar cell.

In every energy conversion some energy is wasted. Therefore, the amount of useful energy from the small bulb must be less than the energy required to light another small bulb.

2) What form of energy goes into the solar cell? __Radiant energy__

3) What form of energy lights the bulb? __Electrical energy__

4) What form of energy is wasted when the bulb lights? __Thermal energy__

b) Find the efficiency of the conversion process that turns radiant energy shining on the solar cell into visible light from the small bulb.

1) If the solar cell requires 100 joules of radiant energy to produce 25 joules of electrical energy, find the efficiency of this step of the conversion process.

\[
\text{Eff} = \frac{\text{Useful Energy Out}}{\text{Total Energy In}} = \frac{25 \text{ J}}{100 \text{ J}} = 0.25 = 25\%
\]

2) If 25 joules of electrical energy are converted into 5 joules of visible light in the small bulb, find the efficiency of this step of the process.

\[
\text{Eff} = \frac{5 \text{ J}}{25 \text{ J}} = 0.20 = 20\%
\]

3) Use the answers to parts 1) and 2) to find the overall efficiency when this solar cell is used to light the small bulb.

\[
\text{Overall efficiency} = \text{Eff}_1 \times \text{Eff}_2 = 0.25 \times 0.20 = 0.05 = 5\%
\]

c) Group Discussion Question: When the solar cell lights the small bulb, the majority of the radiant energy shining on the solar cell is wasted. List the places where energy is wasted. Which forms of energy are wasted?