Write your name on the test booklet. Do NOT simply write an answer. Give a calculation and/or reasoning that supports your answer. Do all work and write all answers in the test booklet. Circle or clearly delineate all relevant work so that I do not take points off for errors in your scratch work.

1) Scattering. A particle with energy \(E = \frac{k^2}{2m} \) approaches the step potential drawn below from the right, from positive infinity. The potential \(V(x) = 0 \) for \(x > 0 \) and \(V(x) = -V_0 \) for \(x < 0 \), so the particle "sees" the potential step down. Compute \(R \) and \(T \), the probability that it will reflect and the probability that it will pass over the step and be transmitted to \(x \to -\infty \).

2) Harmonic Oscillator. (a) Compute \(\langle \hat{X} \hat{P} \rangle \) and \(\langle \hat{P} \hat{X} \rangle \) for a particle in harmonic oscillator state \(|n \rangle \). (b) Compute \(\langle \hat{X} \hat{P} \rangle \) for a state that is \(|\psi(t = 0)\rangle = \frac{i}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle \). This is a function of time.

(3) Coherent State. \(|\psi(0)\rangle = N(|z_0 > -i | - z_0 \rangle) \), where \(z_0 \) is a complex number and:

\[
|z\rangle = \exp(-|z|^2/2) \exp(z a^\dagger)|0\rangle.
\]

(a) Determine \(N \) by normalizing the initial state. (b) Compute \(|\psi(t)\rangle \) and use it to find \(\langle X \rangle \) and \(\langle P \rangle \) as functions of time. Show the time-dependence explicitly and make sure that both results are real. Verify Ehrenfest's Principle, \(\langle P \rangle = m \frac{d}{dt} \langle X \rangle \). (c) Compute \(\langle X^2 \rangle \) and \(\langle P^2 \rangle \) as functions of time. (d) Use these results to find \(\Delta X \) and \(\Delta P \) and verify Heisenberg's Uncertainty Principle.